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... it is known with certainty that
there is scarcely anything which
more greatly excites noble and
ingenious spirits to labors which
lead to the increase of knowledge
than to propose difficult and at the
same time useful problems through
the solution of which, as by no
other means, they may attain to
fame and build for themselves
eternal monuments among
posterity.

Johann Bernoulli, June 1696
Bernoulli

Abstract

Data Science research is undergoing a revolution fueled by the transformative power of technology,
the Internet, and an ever-increasing computational capacity. The rate at which sophisticated algo-
rithms can be developed is unprecedented, yet they remain outpaced by the massive amounts of
data that are increasingly available to researchers. Here we argue for the need to creatively leverage
the scientific research and algorithm development community as an axis of robust innovation. En-
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gaging these communities in the scientific discovery enterprise by critical assessments, community
experiments, and/or crowdsourcing will multiply opportunities to develop new data-driven, repro-
ducible and well-benchmarked algorithmic solutions to fundamental and applied problems of cur-
rent interest. Coordinated community engagement in the analysis of highly complex and massive
data has emerged as one approach to find robust methodologies that best address these challenges.
When community engagement is done in the form of challenges — by which we mean a skill-based
scientific contest, with a limited time duration, ending by a total ranking of participants according
to a pre-defined scoring metric, and the selection of winners — the validation of the analytical
methodology is inherently addressed, establishing performance benchmarks. Finally, challenges
foster open innovation across multiple disciplines to create communities that collaborate directly
or indirectly to address significant scientific gaps. Together, participants can solve important prob-
lems as varied as health research, climate change, and social equity. Ultimately, challenges can
catalyze and accelerate the synthesis of complex data into knowledge or actionable information,
and should be viewed a powerful tool to make lasting social and research contributions.
Keywords: crowdsourcing, benchmarking, contest, competition, challenge

1 Brief history of crowdsourcing

The idea of leveraging a community of experts and non-experts to solve a scientific problem has
been around for hundreds of years. One early example is the 1714 British Board of Longitude
Prize, which was to be awarded to the person who could solve arguably the most important tech-
nological problem of the time: to determine a ship’s longitude at sea (Sobel, 2005). After eluding
many established scientists of the time, the prize was awarded to John Harrison for his invention
of the marine chronometer. There are two important take home messages from the Longitude Prize
example. One is the fact that the winner of the prize was John Harrison, an unknown carpenter
and clock-maker, and not a more recognized scientist of that era. The second key idea is that the
problem was posed as an open participation contest (defined here as an event created by organiz-
ers, governed by rules, and directed to a group of participants, offering the opportunity to win an
award or a prize), what we refer to today as crowdsourcing. When it comes to analyzing large
or novel datasets, it is very likely that the analytical methods and breakthroughs that get the most
useful signal may reside with groups other than the data generators or the most established and best
published groups in a field.

Coined by Jeff Howe in an article in Wired Magazine (Howe, 2006), crowdsourcing mixes
the bottom-up creative intelligence of the community that volunteers solutions with the top-down
management of the organization that poses the problem. Crowdsourcing has been used in many
contexts such as business (the design of consumer products) (Boudreau and Lakhani, 2013), jour-
nalism (the collection of information), and peer-review (in the evaluation of patent applications).
Here, we are interested in the application of crowdsourcing to computational problems in science
and technology.

2 Types of crowdsourcing

Different types of crowdsourcing exist. Generally speaking, crowdsourcing can refer to efforts in
which the crowd provides or generates data (e.g. patients provide their medical information) to be
mined by others, or alternatively competitions –a skill-based scientific contest, with a limited time
duration, involving the submission of proposals, project propositions, project outcomes, and/or
prototypes that are evaluated by a panel of judges– or challenges -a skill-based scientific contest,
with a limited time duration, ending by a total ranking of participants according to a pre-defined
scoring metric, and the selection of winners– in which the crowd actively works on solving a
problem from established data (Good and Su, 2013).
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With respect to active crowdsourcing, there are several types. There is labor-focused crowd-
sourcing, where the job is made open and any individual willing to work can take up the job
(Boudreau and Lakhani, 2013). A well-known example of labor-focused crowdsourcing is the ‘Me-
chanical Turk’ or MTurk service run by Amazon and named after an 18th century chess automaton
with a hidden human inside. The MTurk approach provides an online workforce that allows peo-
ple to complete work, or “Human Intelligence Tasks”, in exchange for a small amount of money
(Goodman et al., 2013).

A problem can also be crowdsourced in a manner that divides it up into a set of separate smaller
tasks to solve. Crowdsourcing of data annotation and curation in Bioinformatics can be handled
well with this approach. This scheme has also been applied to provide pathway resources (Ansari
et al., 2013; Kutmon et al., 2016), reconstruct the human metabolic network (Thiele et al., 2013),
annotate molecular interactions in Mycobacterium tuberculosis (Vashisht et al., 2012), and identify
critical errors in ontologies (Mortensen et al., 2015).

In contrast to labor-focused forms of crowdsourcing, where people are paid for their efforts,
there are forms of crowdsourcing where individuals volunteer their effort because of their interest
in the project or cause. An example of this is the crowdsourced approach taken to the development
of Wikipedia, the Internet’s largest and most popular general reference source. In some instances,
such as Wikipedia and the protein structure game Foldit (Cooper et al., 2010), participants con-
tribute their time and intellectual capacity, while in other examples, such as the Folding@home
(Larson et al., 2009) and rosetta@home (Das et al., 2007) projects, participants provide computa-
tional power from their personal equipment to help solve the problem. Interestingly, Foldit evolved
from rosetta@home, when participants realized that, in some cases, they could intuitively see bet-
ter structures than those predicted computationally. NASA has also leveraged the power of crowd-
sourcing with its Citizen Science Projects (NAS) in which NASA scientists and interested members
of the public (the citizen scientists) work together in dozens of astronomy problems such as finding
new features in Jupiter’s atmosphere and searching for exoplanets, to name a few.

In some instances, crowdsourcing can be implemented in the form of a game (Good and Su,
2011) in order to maximize the number of solvers who work on the problem and increase the like-
lihood that they will stay engaged. For example, in the Foldit project, the problem of determining
protein structure is transformed into an entertaining game. Such "gamification", where one applies
game-design elements to allow an enjoyable experience, has proven a spectacular approach to raise
participant numbers and interest. It also leads to impact: Foldit, with its hundreds of thousand reg-
istered players, provided useful results that matched or outperformed algorithmically computed so-
lutions (Cooper et al., 2010). Foldit was followed by a similarly popular project, EteRNA (Treuille
and Das, 2014), where more than 250,000 registered participants, provided an RNA sequence that
fits in a given shape. The best designs, as chosen by the community, were then tested experi-
mentally (Lee et al., 2014; Cooper et al., 2010). More recently, the EteRNA platform was used
to task the community of RNA enthusiasts to design RNA molecular sensors (Andreasson et al.,
2022). The thousands of designed RNA molecules were synthesized and experimentally tested us-
ing high-throughput biochemical assays as part of the "game", in an iterative process that closed
the loop between the real world and the online world. A diversity of tasks can be embedded in
existing games. For example, a mini-game in the EVE Online game engaged millions of registered
gamers to provide tens of million classifications. Combining these with deep learning led to largely
improve image-classification (Sullivan et al., 2018). In another example, the Borderlands Science
mini-game in Borderlands 3 (Waldispühl et al., 2020) engaged over a million participants to solve
50 million tasks within three months. The results of the mini-game are aggregated to improve a
reference alignment of millions of ribosomal sequences for gut flora.

Crowdsourcing projects are also effective for collecting new ideas or directions that may be
needed to solve a tough problem. These are referred to as “ideation” competitions, and the Board
of Longitude Prize mentioned above falls within this category. More recently the Longitude Prize
2014 (Rees, 2014) built on the success of its predecessor to address the problem of antibiotic resis-
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tance through the creation of point-of-care test kits for bacterial infections. Amongst many other
ideation prizes, the XPRIZE Qualcomm Tricoder prize (Chandler, 2014) encouraged participants
to develop a handheld wireless device that monitors and diagnoses health conditions.

When combined with crowdsourcing, benchmarking –that is, the evaluation of methods or
models in well-defined conditions for the purpose of making standardized comparison– becomes
a powerful approach to rapidly develop solutions that exceed the state of the art. At the most
basic level, a performance benchmark requires a task, a metric, and a means of authenticating the
result. In this modality of crowdsourcing, data is provided to participants along with the particular
question to be addressed. Often, the organizers of such challenges will have "ground truth" or “Gold
Standard” data that is known only to them and allows them to objectively score the methods that
participants develop. Participants submit their solutions so that the organizers evaluate against the
Gold Standard data. In this way, it is possible to find the best available method to solve the problem
posed, and the participants can get an objective assessment of their methods. The organization
of these efforts requires clear scoring metrics for evaluation of the solutions and availability of
non-public datasets for use as Gold Standards. With the addition of a time constraint, participants
are motivated to work concurrently, thus increasing the opportunities for collaboration and idea
exchange.

Perhaps the first benchmarking challenge, posed to the many, but for which the solution is
known only to a few, was used by Johann Bernoulli in the 17th century (Herrera, 1994) to compare
methods to solve a mathematical problem. Johann Bernoulli had solved what today is known as
the problem of the brachistochrone, consisting of determining the shape of the non vertical curve
that would make the time taken by a bead sliding on it under the effect of gravity, reach the other
extreme in the shortest time. This challenge was advertised in an article (Bernoulli) published in
June 1696 using the words cited in the epigraph of this chapter. The incentive was then, as it is now,
to make or break reputations, as indicated by Bernoulli when he states that through the solution of
these challenges, solvers "may [...] build for themselves eternal monuments among posterity.". In
the end, five solutions were submitted, including an anonymous one bearing an English postmark
which was likely Newton’s submission. So, who won this challenge? In some ways it was a tie,
as all 5 solutions were correct. But Jakob Bernoulli’s solution distinguishes itself as using methods
that would eventually pave the way to the development of the calculus of variations.

Benchmarking challenges have played a key role in the evolution of many areas of AI and
predictive modeling. The standard ingredients of benchmarking competitions include a stated
problem, enrolled competitors, a public dataset on which competitors train their models, and a
scoring methodology which assesses the accuracy of the predictions on a private, hidden test set.
This methodology is known in some quarters as the Common Task Framework (Liberman, 2010;
Donoho, 2017)). In 1986 DARPA adopted the the Common Task Framework as a new paradigm to
advance machine translation research. Over time, incremental improvements have accumulated to
yield much of the technology that is taken for granted today, such as optical character recognition,
instant automatic translation, dictation, and commanding computers by voice. The combination of
this objective approach to benchmarking with predictive modeling culture has been described as
the “secret sauce” of machine learning (Donoho, 2017).

The field of "protein folding" provides a sterling example of how benchmarking can nucleate
communities and be a powerful driving force that lead to the solution of fundamental problems
in science. Proteins are large, complex molecules that are essential to all life forms. Proteins are
polymers composed of a linear chain of sub-units called aminoacids which interact with each other
and with the surrounding water. These interactions make the polymer fold in 3D space until it
reaches a stable minimum energy configuration. The function of proteins depend to a large degree
on the 3D configuration it adopts. Figuring out the 3D shape of proteins is known as the “protein
folding problem”, a grand challenge in biology whose solution defied scientists for the past 50
years. CASP (Critical Assessment of protein Structure Prediction), a benchmarking challenge to
assess the accuracy of protein structure prediction methods, has played a pivotal role in advancing
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the field (Kryshtafovych et al., 2021). Since its first edition in 1994, CASP has provided a biennial
forum to benchmark the performance of structure prediction methods by comparing the predicted
fold of proteins against their actual 3D structures known only by the organizers. In this way CASP
can establish the state of the art in this field of science. Recently, CASP was at the center of a major
scientific advance, by enabling the demonstration that the AI system called AlphaFold achieved an
unprecedented accuracy in solving the protein structures proposed by the CASP organizers (Jumper
et al., 2021a). This breakthrough demonstrates the impact that benchmarking challenges can have in
motivating the community and taking the pulse of the progress towards the solution of fundamental
scientific problems.

The previous examples aim to illustrate how benchmarking challenges can 1) encourage the
community to focus their efforts to solve important problems in science and technology by provid-
ing enticing incentives for participation, 2) provide a fair and objective comparison of the submitted
solutions and help set the state of the art of a field, and 3) accelerate the pace of research by crowd-
sourcing a problem to a community of experts. These types of challenges, in which a competition
is a means to a collaborative effort, are sometimes called collaborative competitions, critical as-
sessments, or community experiments, and are the focus of this Chapter.

3 Collaborative competitions
A collaborative competition - often called a challenge or coopetition- is a specific form of crowd-
sourcing that has grown in popularity amongst research scientists during the past few decades. This
kind of challenge leverages the use of leaderboards that allow participants to monitor their perfor-
mance ranking with respect to others. Leaderboards also provide real-time feedback throughout a
challenge to assess how their performance changes as their model evolves. Collaborative compe-
titions also offer incentives, such as monetary prizes and/or the opportunity to co-author scientific
publications that result from the challenge (See Chapter 13). General factors that lead to successful
challenges include low entry barriers, continuous stimulation from the organizers, small interme-
diate milestones/rewards, an important problem with high economical and/or societal impact, and
opportunities to get recognition or potentially a job offer.

It has been observed in many contexts such as those described above that there is a wisdom in
the crowd (Surowiecki, 2005), a sort of emerging intelligence in which an aggregation of solutions
proposed by teams, as long as they are working relatively independently, is often more accurate
than any of the single solutions. This community wisdom gives real meaning to the notion of
collaboration by competition.

Many collaborative competitions, covered in Chapters 6, 7, 8, and 9, have emerged over the
last few decades. These cover multiple areas of science and technology, ranging from fundamental
to applied questions in machine learning (Kaggle (Goldbloom and Hamner, 2010), Codalab (Pavao
et al., 2022)), structural biology such as protein structure prediction (CASP (Kryshtafovych et al.,
2021) – Critical Assessment of protein Structure Prediction, CAPRI33), to asses algorithms devel-
oped to interpret human genetic variation (CAGI (Hoskins et al., 2017) - the Critical Assessment
of Genome Interpretation), to the assessment of data coming from a specific experimental tech-
nology (e.g. BioCreative for natural language processing (Liu et al., 2019) or MICCAI (Schnabel
et al., 2019) for Medical Image Analysis). Collaborative competitions also provide a framework
to evaluate software pipelines to process different data types, such as RGASP (RNA-seq Genome
Annotation Assessment Project) that runs a challenge to evaluate software to align partial tran-
script reads to a reference genome sequence, a key step in RNA-seq data processing (Engström
et al., 2013). Other initiatives started with a narrow focus and then broadened their spectrum. For
example the DREAM Challenges originally addressed the inference of gene regulatory networks
from experimental data (Stolovitzky et al., 2007), and hence the name DREAM: Dialogue for Re-
verse Engineering Assessment and Methods. However, over the years DREAM has evolved to
address challenges ranging from regulatory genomics to translational medicine (Saez-Rodriguez
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et al., 2016). Recently, NeurIPS, the premiere conference in machine learning, has started chal-
lenges (NeurIPS Competitions) on a broad range of topics. These initiatives are often driven by
academic efforts, although companies or other institutions and disease foundations (e.g. Prize4Life,
Alzheimer’s Research UK and the Arthritis Foundation) also run or support them.

4 The ingredients for a collaborative competition
Central to any crowdsourced challenge is the scientific question that the challenge intends to ad-
dress. Not all questions are amenable to the challenge framework and not all questions have the
potential to spark a community to action. The question must be fundamental to a field of research.
Often times challenges are incentivized with academic publications (see Chapter 5), cash prizes and
travel grants (see Chapter 13), as well as the interest of researchers to help to advance their field.
Good challenge questions are conceptually straightforward and attract researchers from many fields
of study who apply their specific principles and methods to address the question. For example, in
the DREAM Network Inference Challenge (Marbach et al., 2012), the task was to infer and bench-
mark transcription factor-to-target gene relationships. Because networks and graphic modeling are
fundamental to many areas, researchers from Computational Biology, Engineering, Computer Sci-
ence and Physics, to name a few, applied methods developed in their fields to address this challenge.
Another example includes the Higgs Boson Machine Learning Challenge 1, which was timely and
attracted the largest number of Kaggle competitors at that time. Participants were eager to learn how
physics experiments to discover new particles were conducted and were motivated to contribute.
All top ten ranking participants were not particle physicists and novel methods from oceanogra-
phy and other fields were contributed. This trend, namely the convergence of experts in different
disciplines to try to solve a timely problem, has been observed in other challenges. Inspiring new
approaches to a fundamental question is central to crowdsourced challenges, thus relating science
and technology questions to principles shared across many disciplines helps drive innovation.

From a practical perspective, a challenge must have enough data already generated to address
the scientific question. Importantly, collaborative competitions multiply the impact of the crowd-
sourced datasets since dozens and sometimes hundreds of researchers will look at the data to ex-
tract insights. While much data is being generated in different areas of research and business, there
still remain many interesting questions for which appropriate datasets are lacking. The underlying
data must be not only sufficiently large but also of sufficient quality, diversity and complexity so
that researchers can extract revealing patterns from the data. Additionally, the datasets must be of
sufficient size so that robust statistical evaluation can be performed.

Crowdsourcing needs crowds: the more participation in a challenge, the higher the probability
of solving it. However, and perhaps perversely, if hundreds of solutions are submitted, the statistical
significance of the potential solutions degrades because of multiple hypothesis testing.

Fundamental to crowdsourced collaborative competitions is the unbiased, rigorous benchmark-
ing of methods. This requires not only a sufficient amount and quality of data, but also a gold
standard set of data to evaluate method performance. This gold standard must be inaccessible to
challenge participants, which is an essential component of rigor in challenges. Also central to
benchmarking is the metric used for scoring and evaluation. There are often many ways to evaluate
method performance with each metric capturing a different aspect of performance. Selecting the
proper metric must be considered in the context of the question being addressed. While the gold
standard data and evaluation metrics establish rigor, unbiased evaluation is unique to crowdsourced
challenges. In the typical research process, researchers develop methods and evaluate them on met-
rics and data that they select. Even unconsciously, this form of self-evaluation presents a biased
method assessment, which can lead to what has been termed the “self-assessment trap.” (Norel
et al., 2011) Crowdsourced challenges remove this bias in favor of a proper benchmarking of meth-

1. https://www.kaggle.com/c/higgs-boson
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ods; however, the results of a challenge must be interpreted in the context of the data, question, and
scoring metric.

The rest of the book is devoted to understanding important aspects of contests, competitions,
challenges and benchmarks. Chapter 2 provides practical advice on challenge design and Chapter
3 is devoted to details on dataset preparation. In Chapter 4 details on scoring metrics and challenge
judging are discussed. Additionally, see Chapter 11 for a tutorial on how to create your own chal-
lenge or benchmark and Chapter 12 for challenges that have special designs, such as where teams
submit an agent, instead of a discrete model, and the agent interacts with a simulator.

5 Challenge Organization
While it may seem simple at first sight, running challenges poses significant operational problems
that require a coordinated effort from the organizers. Figure 1 shows the typical tasks involved in a
challenge which require four layers of expertise: scientific, technical, legal and ethical. The genesis
of a challenge could be the existence of a dataset with complex data whose analysis could benefit
from the crowdsourcing paradigm (Green et al., 2015; Abdallah et al., 2015; Atassi et al., 2014).
More often challenges arise from scientific questions for which the answer requires new method
development and validation (Bansal et al., 2014), or from the need to benchmark algorithms that
yield divergent results and for which an objective evaluation is needed (Boutros et al., 2014).

The starting point for challenge organization is the definition of the scientific question for the
challenge (see Chapter 2). This question must be of an applied or basic research nature, and to be
impactful its importance has to be apparent. Addressing an impactful question is important to se-
cure funding and to motivate challenge participation (see Chapter 13). Many challenges are hosted
by organizations that focus on specific types of problems, such as DREAM for biomedicine, CASP
for protein structure prediction, or ChaLearn (Cha) for Machine Learning. Typically these organi-
zations decide through internal vetting process what challenges are organized. Other organizations
that foster the organization of challenges, such as NeurIPS, makes yearly open calls for competi-
tions (Neu), and send the competition proposals for peer review to ensure that the challenge objec-
tives are scientifically significant and of societal value. In all cases, the challenge question should
be formulated in a way that it can be addressed in a collaborative competition setting, typically in
the form of a predictive or classification algorithms. In some cases the question may simply be one
of improving the state of the art in the performance of algorithms to solve a problem (e.g., pro-
tein structure prediction). In others the question could be a novel question for which no reference
exists in a specific domain. In the latter case, competition organizers may involve coordination
with a steering committee of experts in the domain area (technologists, physicians, economists,
researchers, etc.). Additional considerations should also be had into account if the data are from
sensitive sources or the results from the challenge could be used in an unethical manner.

The second step is assembling a team of data scientists, data governance and IT engineers to
manage the data use agreements, data analysis tasks and IT infrastructure, or set up the challenge
in the competition platform of choice (Chapter 10). It should be noted that data governance and
establishing robust and reasonable data use agreements can be a time and resource consuming task,
but it is essential for protection of sensitive data and to ensure its proper and ethical use.

Procurement and processing of the data is critical (see Chapter 3). It is essential that part of the
data be unpublished so that it can be used as a gold standard dataset against which to score challenge
submissions. This step usually requires Big Data processing such as normalization, compression,
etc. If synthetic data is used for the challenge, appropriate tests are required to ensure it maintains
privacy while maintaining fidelity to the original data. Having the data organized and packaged in
easy-to-use datasets is necessary to reduce the barriers for participation. Adequate data governance
must be in place, such as agreements with data producers, study participants, and Institutional
Review Board (IRB) approvals for human data. Restrictions on the use of the data outside of the
challenge should be clearly stated in the challenge rules.
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Figure 1: The steps and tasks in the organization of a typical challenge.

Conducting an internal “dry-run” amongst the challenge organizing team or “mock partici-
pants” to test if the posed challenge question can be addressed with the data at hand is critical to
determine if the challenge has sufficient data to solve the problem, but also that the challenge can-
not be solved with trivial approaches. The dry run outcomes are (a) Dataset splits into balanced
training data, validation data and test data sets, (b) Selection of an evaluation metric, (c) An
estimate of the difficulty in answering the challenge questions with the data at hand (if a challenge
seems impossible, then it may be better not to do it!), and (e) A definition of a baseline solution that
the participants should improve upon, ideally using the present state-of-the-art approach. Further
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documenting the solution with background information (e.g. a challenge overview and selected
literature) and step-by-step guide to submissions as part of a "starter kit" is also extremely useful
in reducing the participation barrier and increasing engagement.

A challenge needs an information technology infrastructure and web content. Important in-
gredients of such infrastructure are a registration system (with the requirement that participants
agree to the challenge terms and conditions) (Dyke et al., 2018), a challenge website containing
a detailed challenge description, dataset storage and download and submission uploads, leader-
boards for real-time feedback of performance, and a discussion forum where participants can
communicate with organizers and other participants. The DREAM Challenges, for example, use
Sage Bionetworks’ Synapse platform https://www.synapse.org. Finally, in our era of
Big Data, challenge platforms have started to use cloud services, for example Kaggle Notebooks
https://www.kaggle.com/code where models written as code notebooks are developed
and can directly access both public and private data. See Chapter 10 for a review of challenge
platforms.

The next step is the definition of incentives to recruit as many participants as possible to solve
the challenge. Incentives can include an invitation to the best performers to help draft and submit
a challenge overview paper, a speaking invitation to conferences, monetary awards, and in some
challenges a job offer. Often times, individual teams are encouraged to publish their methodology
as a separate publication. In the academic community the most popular incentive is the prospect
of co-authoring manuscripts, but many participants are motivated to participate in a collaborative
effort where they can work on interesting and unpublished data to address an impactful problem.
Chapter 5 discusses how to boost the impact of a challenge.

Before launching the challenge, it is desirable that a robust marketing and outreach campaign
should be in place. This step is highly necessary as the success of the challenge depends on the
degree of participation. Successful marketing approaches include the use of press releases, mailing
lists, pre-challenge commentaries in top tier journals, interactive "warm up" or "kickoff" sessions,
and direct outreach to researchers in the domain most directly connected to the challenge in ques-
tion. See Chapter 13 for an in depth discussion on practical considerations in challenges, such as
sponsors, grants, prizes, dissemination, and publicity.

After much preparation, the day arrives when the challenge is launched. The data is crowd-
sourced and solutions to the scientific problems posed in the challenge are solicited in the "open
phase," also referred to as the "feedback phase" or "development phase." The open phase is char-
acterized by the improvement of algorithms and methods using leaderboards to monitor progress,
an open discussion of ideas and data features, using a Discussion Forum, and a deadline to submit
the solutions. To submit their solutions participants can simply send a file with their list of pre-
dictions of the gold standard target values, or executables such as docker containers that will be
run on withheld data for training and/or inference. By bringing the model to the data, the latter
code-submission competitions overcome the difficulties of accessing private datasets, and increase
the reproducibility of the results (Ellrott et al., 2019). In the open phase, limits in the number of
allowed submissions are needed to prevent learning the gold standard test data by trial and error.
The number of submissions per day or total number of submissions may be limited. Submission
limits may be circumvented by coordination between teams or creating multiple registrations per
participant. To avoid this, such team coordination or creating fake teams with same participants
but different team names must be explicitly prohibited in the challenge rules. Depending on the
organization, there are different restrictions about the copyright and intellectual property rights as-
sociated with the submissions. Organizations that foster open and collaborative science typically
require that participants submit open source code and an explanation of the methods used in the
predictions to be accessed publicly.

When the open phase of the challenge finishes, the final assessment phase starts, in which
submissions are evaluated to determine the best performers. The best submission from the open
phase or a single final submission can be used to determine the final leaderboard metrics. Scoring
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consists of comparing the submitted predictions of outcomes against the true outcomes using a held
out gold standard, which is known to organizers but not to the participants. In order for a final score
to be meaningful, it has to be accompanied with a statistical criterion of how difficult reaching that
degree of performance is, typically under a null hypothesis. Several scoring metrics can be used to
assess different aspects of the predictions (Cokelaer et al., 2015).

After the final scoring phase ends, the opportunity to learn from the aggregate of submissions
starts. In the DREAM Challenges, for example, organizers and interested challenge participants
work together to analyze the results of the challenge and write a paper that describes it. Many
challenge platforms organize a conference to discuss take home lessons, and present results. There
are a few venues that focus on reporting challenges, such as the NeurIPS Competition Track and
the Challenges in Machine Learning (ChaLearn) book series http://www.chalearn.org/
books.html. See Chapter 5 for tips on writing a post-challenge paper.

Besides papers reporting on the overall challenge, the legacy of a challenge can be curating a
database that archives and makes available for future use in education, research and benchmarking
the concrete outcomes of the challenge. This database typically includes software code and docu-
mentation wikis of the participants and teams who provided a final submission. Example reposito-
ries include Sage Bionetworks Synapse https://www.synapse.org, UCI machine learning
repository https://archive.ics.uci.edu/ml/index.php,Kaggle datasets https://
www.kaggle.com/datasets, and Papers with Code https://paperswithcode.com/.

In this section we explored general considerations regarding the various steps and tasks neces-
sary for organizing an effective challenge. Many of the subsequent chapters in this book will delve
deeper into the specific of these steps.

6 Challenge platforms
The success of the crowdsourcing paradigm has spurred a proliferation of challenge initiatives
and platforms. Wikipedia lists close to 150 crowdsourcing projects in very diverse areas such as
design and technology innovation. Figure 2 shows some of the most popular researcher driven
challenge initiatives as well as the most popular commercial challenge platforms. The list is not
intended to be comprehensive, as it omits some significant initiatives. However, it aims to highlight
consistent and well-established challenge initiatives. Chapter 10 describes other popular challenge
and competition platforms.

Among the researcher driven challenges, biomedicine is an exemplar of using challenges to
support the significant changes in research needs. With the rapid increase in the amount of data,
especially molecular information on genetic sequences, signaling pathways, protein structures, and
medical imaging, public challenges are a strategy to develop and share novel methods. The topics
that have profited the most from these types of efforts are structural biology (CAPRI, CASP), ge-
nomics (Sequence Squeeze, Assemblathon, CAMDA), systems biology (sbv-IMPROVER), text
mining (BioCreative, CACAO, TREC Crowd), medicine (CLARITY), medical imaging (MIC-
CAI), and emerging technologies in search of benchmarking and new analytical tools (RGASP,
FlowCAP). Some challenge initiatives straddle more than one domain areas such as CAFA (Ge-
netics/Genomics, Structural Biology), CAGI (genetics/Genomics, Systems Biology) and DREAM
(Genetics/Genomics, Systems Biology, Emerging Technologies and Medicine). Initiatives such as
DREAM, FlowCAP, CAGI and sbv-IMPROVER organize several challenges per year, and only
the generic initiatives and not specific challenges are shown in Figure 2. As mentioned earlier, the
case of structural biology and CASP is a paradigmatic example of how challenges have nurtured a
field. For the last three decades, scientists tackled the key problems in this field in biannual chal-
lenges, followed by conferences where results were discussed. The field steadily progressed until
in 2020, a deep learning model, AlphaFold, provided spectacular results (Callaway, 2020; Jumper
et al., 2021b). While there are many open questions in the field, this was a major leap that built on
the work of the community over the years. Machine learning research has similarly experienced
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Figure 2: Non-exhaustive subset of challenge platforms and organizations in the biomedicine space
(left), and some platforms that organize challenges in a variety of areas of science and
technology (right).

a rapid expansion in method research, to support research in this area, the Conference on Neural
Information Processing Systems (NeurIPS) has created a dedicated competition track since 2017 to
highlight challenging problems and innovative solutions.

Crowdsourcing can be a profitable business. The business consists of organizing challenges as
a fee for service for other companies or organizations that may not have the expertise necessary to
give solutions to a specialized task. In such cases crowds can fill that expertise gap. Amongst
the most popular and successful commercial challenge platforms we can mention Innocentive
(https://www.innocentive.com/), which crowdsources challenges in science and tech-
nology (Social, Physics, Biology, Chemistry); TopCoder (https://www.topcoder.com/),
which serves the software developer community; and Kaggle (https://www.kaggle.com/),
that administers challenges to machine learning and computer savvy experts, addressing predic-
tive analytics problems in a wide range of disciplines. Other open source competition platforms
include Codalab (Pavao et al., 2022) (https://codalab.lisn.upsaclay.fr/), EvalAI
(https://eval.ai/) and Grand Challenge (https://grand-challenge.org/), and
are discussed in Chapter 10.

7 Conclusions/perspective

Crowdsourced challenges offer a different way of doing science or solving problems collabora-
tively. This is not to say better than traditional approaches, but an alternative way to engage solvers
and make valuable data available to the community. As discussed earlier in this Chapter, crowd-
sourcing is not a new idea, though when applied to science, it does cut against the grain of tra-
ditional, silo-ed academic research. Ultimately, we are at a point where the generation of data is
outpacing our ability to make sense of this data. Team science has grown concomitantly with the
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generation of these data because modern science and technology questions are often complex and
require a multi-disciplinary approach. As the nature of data continues to change, both in richness
and volume, analysis of these data is a continual difficulty we face. To advance science we must
explore different modes of research to expand the frontiers of knowledge.

There are many opportunities for crowdsourced challenges to accelerate many aspects of aca-
demic education and research. In education, challenges in different fields can be used as learning
modules to introduce computational methodologies and their rigorous evaluation. Students from
high school to graduate level could develop their skills in ongoing challenges, while learning to
collaborate with others to solve pressing problems in biomedicine, sustainability, environmental
sciences, etc. Chapter 8 discusses the educational value of challenges and benchmarks in more
detail. In research, the sheer amount of work that can be focused on one question in a short period
of time is unmatched. As an illustration, a typical challenge that runs for a period of 5 months
with 150 participants. Assuming that each researcher on average worked 100 hours on the chal-
lenge,represents about 15,000 hours of research effort dedicated to addressing one question; there
are only 3,600 hours in 5 months. Even if an individual were to dedicate this amount of time
to address a single question, it is unlikely that this individual would have the cross-disciplinary
knowledge of 150 participants, thus a much smaller sampling of methods would be explored. One
can imagine community efforts that both produce data and run a challenge to address a question
in a time frame shorter than even the best funded research institutions can attain. If harnessed,
this energy could potentially impart an extraordinary increase in the velocity and depth with which
important problems are attacked. Chapters 6, 7 and 8 will provide overviews and special consider-
ations for academic, industrial and educational challenges respectively.

Crowdsourced challenges produce rigorous and, if well run, unbiased benchmarked methods,
with results representing the state-of-the-art in the field. (Chapter 9 further discusses benchmarks
in machine learning.) Best performing methods produced in any given challenge have undergone a
vetting process that cannot be done by any individual research group. This vetting process can be
used to aid in academic publications, or a challenge-assisted peer review. Successfully applied by
the journal Science Translational Medicine in the Sage-BCC DREAM Challenge (Margolin et al.,
2013), this form of peer review is more rigorous than any individual reviewer can do.

Data is being generated at an unprecedented rate and the number of potential crowdsourced
challenges is increasing. This poses a hurdle in and of itself. The selection of challenges will be-
come increasingly difficult with many worthy challenges competing for the attention of the research
community and the research community growing more fatigued of these challenges. It remains an
open question how to most effectively select questions for the community to address, with a poten-
tial solution being that the community itself crowdsources the question, that is, let the community
decide which challenge to address.

Without participation, crowdsourced challenges would not exist, So as challenge organizers,
we thank all the curious and ambitious solvers that have contributed to these community efforts. If
the reader in interested in organizing a challenge or benchmark, Chapter 11 provides an excellent
hands-on tutorial to get started. .

References
Nasa citizen science projects, http://www.chalearn.org. URL http://www.chalearn.org.

Nasa citizen science projects, https://science.nasa.gov/citizenscience. URL https://science.nasa.
gov/citizenscience.

Neurips competition track, https://blog.neurips.cc/tag/competitions/. URL https://blog.neurips.
cc/tag/competitions/.

12

http://www.chalearn.org
https://science.nasa.gov/citizenscience
https://science.nasa.gov/citizenscience
https://blog.neurips.cc/tag/competitions/
https://blog.neurips.cc/tag/competitions/


INTRODUCTION

Kald Abdallah, Charles Hugh-Jones, Thea Norman, Stephen Friend, and Gustavo Stolovitzky. The prostate
cancer dream challenge: a community-wide effort to use open clinical trial data for the quantitative pre-
diction of outcomes in metastatic prostate cancer. The oncologist, 20(5):459, 2015.

Johan OL Andreasson, Michael R Gotrik, Michelle J Wu, Hannah K Wayment-Steele, Wipapat Kladwang,
Fernando Portela, Roger Wellington-Oguri, Eterna Participants, Rhiju Das, and William J Greenleaf.
Crowdsourced rna design discovers diverse, reversible, efficient, self-contained molecular switches. Pro-
ceedings of the National Academy of Sciences, 119(18):e2112979119, 2022.

Sam Ansari, Jean Binder, Stephanie Boue, Anselmo Di Fabio, William Hayes, Julia Hoeng, Anita Iskandar,
Robin Kleiman, Raquel Norel, Bruce O’neel, et al. On crowd-verification of biological networks. Bioin-
formatics and biology insights, 7:BBI–S12932, 2013.

Nazem Atassi, James Berry, Amy Shui, Neta Zach, Alexander Sherman, Ervin Sinani, Jason Walker, Igor
Katsovskiy, David Schoenfeld, Merit Cudkowicz, et al. The pro-act database: design, initial analyses, and
predictive features. Neurology, 83(19):1719–1725, 2014.

Mukesh Bansal, Jichen Yang, Charles Karan, Michael P Menden, James C Costello, Hao Tang, Guanghua
Xiao, Yajuan Li, Jeffrey Allen, Rui Zhong, et al. A community computational challenge to predict the
activity of pairs of compounds. Nature biotechnology, 32(12):1213–1222, 2014.

J Bernoulli. A new problem to whose solution mathematicians are invited. Acta Eruditorum, 18:269.

Kevin J Boudreau and Karim R Lakhani. Using the crowd as an innovation partner. Harvard business review,
91(4):60–9, 2013.

Paul C Boutros, Adam D Ewing, Kyle Ellrott, Thea C Norman, Kristen K Dang, Yin Hu, Michael R Kellen,
Christine Suver, J Christopher Bare, Lincoln D Stein, et al. Global optimization of somatic variant identi-
fication in cancer genomes with a global community challenge. Nature genetics, 46(4):318–319, 2014.

Ewen Callaway. ‘it will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures.
Nature, 588(7837):203–204, November 2020. doi: 10.1038/d41586-020-03348-4. URL https://
doi.org/10.1038/d41586-020-03348-4.

David L Chandler. A doctor in the palm of your hand: how the qualcomm tricorder x-prize could help to
revolutionize medical diagnosis. IEEE pulse, 5(2):50–54, 2014.

Thomas Cokelaer, Mukesh Bansal, Christopher Bare, Erhan Bilal, Brian M Bot, Elias Chaibub Neto, Feder-
ica Eduati, Alberto de la Fuente, Mehmet Gönen, Steven M Hill, et al. Dreamtools: a python package for
scoring collaborative challenges. F1000Research, 4, 2015.

Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee, Michael Beenen, Andrew Leaver-
Fay, David Baker, Zoran Popović, et al. Predicting protein structures with a multiplayer online game.
Nature, 466(7307):756–760, 2010.

Rhiju Das, Bin Qian, Srivatsan Raman, Robert Vernon, James Thompson, Philip Bradley, Sagar Khare,
Michael D Tyka, Divya Bhat, Dylan Chivian, et al. Structure prediction for casp7 targets using extensive
all-atom refinement with rosetta@ home. Proteins: Structure, Function, and Bioinformatics, 69(S8):118–
128, 2007.

David Donoho. 50 years of data science. Journal of Computational and Graphical Statistics, 26(4):745–766,
2017. doi: 10.1080/10618600.2017.1384734. URL https://doi.org/10.1080/10618600.
2017.1384734.

13

https://doi.org/10.1038/d41586-020-03348-4
https://doi.org/10.1038/d41586-020-03348-4
https://doi.org/10.1080/10618600.2017.1384734
https://doi.org/10.1080/10618600.2017.1384734


STOLOVITZKY et al.

SOM Dyke, M Linden, I Lappalainen, JR De Argila, K Carey, D Lloyd, JD Spalding, MN Cabili, G Kerry,
J Foreman, T Cutts, M Shabani, LL Rodriguez, M Haeussler, B Walsh, X Jiang, S Wang, D Perrett,
T Boughtwood, A Matern, AJ Brookes, M Cupak, M Fiume, R Pandya, I Tulchinsky, S Scollen, J Törnroos,
S Das, AC Evans, BA Malin, S Beck, SE Brenner, T Nyrönen, N Blomberg, HV Firth, M Hurles, AA Philip-
pakis, G Rätsch, M Brudno, KM Boycott, HL Rehm, M Baudis, ST Sherry, K Kato, BM Knoppers, D Baker,
and P Flicek. Registered access: authorizing data access. Eur J Hum Genet., 26:1721–1731, 2018.

Kyle Ellrott, Alex Buchanan, Allison Creason, Michael Mason, Thomas Schaffter, Bruce Hoff, James Eddy,
John M Chilton, Thomas Yu, Joshua M Stuart, et al. Reproducible biomedical benchmarking in the cloud:
lessons from crowd-sourced data challenges. Genome biology, 20(1):1–9, 2019.

Pär G Engström, Tamara Steijger, Botond Sipos, Gregory R Grant, André Kahles, Gunnar Rätsch, Nick Gold-
man, Tim J Hubbard, Jennifer Harrow, Roderic Guigó, et al. Systematic evaluation of spliced alignment
programs for rna-seq data. Nature methods, 10(12):1185–1191, 2013.

Anthony Goldbloom and Ben Hamner. Kaggle. 2010. URL https://www.kaggle.com/.

Benjamin M Good and Andrew I Su. Games with a scientific purpose. Genome biology, 12(12):1–3, 2011.

Benjamin M Good and Andrew I Su. Crowdsourcing for bioinformatics. Bioinformatics, 29(16):1925–1933,
2013.

Joseph K Goodman, Cynthia E Cryder, and Amar Cheema. Data collection in a flat world: The strengths and
weaknesses of mechanical turk samples. Journal of Behavioral Decision Making, 26(3):213–224, 2013.

Angela K Green, Katherine E Reeder-Hayes, Robert W Corty, Ethan Basch, Mathew I Milowsky, Stacie B
Dusetzina, Antonia V Bennett, and William A Wood. The project data sphere initiative: accelerating cancer
research by sharing data. The oncologist, 20(5):464, 2015.

M Herrera. Galileo, bernoulli, leibniz and newton around the brachistochrone problem. Rev Mexicana Fis,
40(3):459–475, 1994.

Roger A Hoskins, Susanna Repo, Daniel Barsky, Gaia Andreoletti, John Moult, and Steven E. Brenner. Re-
ports from cagi: The critical assessment of genome interpretation. Human Mutation, 38(9):1039–1041,
2017. doi: https://doi.org/10.1002/humu.23290. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/humu.23290.

Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Applying and improving alphafold
at casp14. Proteins: Structure, Function, and Bioinformatics, 89(12):1711–1721, 2021a.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, 2021b.

Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John Moult. Critical assessment
of methods of protein structure prediction (casp)—round xiv. Proteins: Structure, Function, and Bioinfor-
matics, 89(12):1607–1617, 2021.

Martina Kutmon, Anders Riutta, Nuno Nunes, Kristina Hanspers, Egon L Willighagen, Anwesha Bohler,
Jonathan Mélius, Andra Waagmeester, Sravanthi R Sinha, Ryan Miller, et al. Wikipathways: capturing the
full diversity of pathway knowledge. Nucleic acids research, 44(D1):D488–D494, 2016.

14

https://www.kaggle.com/
https://onlinelibrary.wiley.com/doi/abs/10.1002/humu.23290
https://onlinelibrary.wiley.com/doi/abs/10.1002/humu.23290


INTRODUCTION

Stefan M Larson, Christopher D Snow, Michael Shirts, and Vijay S Pande. Folding@ home and genome@
home: Using distributed computing to tackle previously intractable problems in computational biology.
arXiv preprint arXiv:0901.0866, 2009.

Jeehyung Lee, Wipapat Kladwang, Minjae Lee, Daniel Cantu, Martin Azizyan, Hanjoo Kim, Alex Limpaecher,
Snehal Gaikwad, Sungroh Yoon, Adrien Treuille, et al. Rna design rules from a massive open laboratory.
Proceedings of the National Academy of Sciences, 111(6):2122–2127, 2014.

Mark Liberman. Fred Jelinek. Computational Linguistics, 36(4):595–599, 12 2010. ISSN 0891-2017. doi:
10.1162/coli_a_00032. URL https://doi.org/10.1162/coli_a_00032.

Sijia Liu, Yanshan Wang, and Hongfang Liu. Selected articles from the biocreative/ohnlp challenge 2018,
2019.

Daniel Marbach, James C Costello, Robert Küffner, Nicole M Vega, Robert J Prill, Diogo M Camacho,
Kyle R Allison, Manolis Kellis, James J Collins, and Gustavo Stolovitzky. Wisdom of crowds for robust
gene network inference. Nature methods, 9(8):796–804, 2012.

Adam A Margolin, Erhan Bilal, Erich Huang, Thea C Norman, Lars Ottestad, Brigham H Mecham, Ben
Sauerwine, Michael R Kellen, Lara M Mangravite, Matthew D Furia, et al. Systematic analysis of
challenge-driven improvements in molecular prognostic models for breast cancer. Science translational
medicine, 5(181):181re1–181re1, 2013.

Jonathan M Mortensen, Evan P Minty, Michael Januszyk, Timothy E Sweeney, Alan L Rector, Natalya F Noy,
and Mark A Musen. Using the wisdom of the crowds to find critical errors in biomedical ontologies: a
study of snomed ct. Journal of the American Medical Informatics Association, 22(3):640–648, 2015.

Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. The self-assessment trap: can we all be better
than average? Molecular systems biology, 7(1):537, 2011.

Adrien Pavao, Isabelle Guyon, Anne-Catherine Letournel, Xavier Baró, Hugo Escalante, Sergio Escalera,
Tyler Thomas, and Zhen Xu. CodaLab Competitions: An open source platform to organize scientific
challenges. Technical report, Université Paris-Saclay, FRA., April 2022. URL https://hal.inria.
fr/hal-03629462.

Martin Rees. A longitude prize for the twenty-first century. Nature News, 509(7501):401, 2014.

Julio Saez-Rodriguez, James C Costello, Stephen H Friend, Michael R Kellen, Lara Mangravite, Pablo Meyer,
Thea Norman, and Gustavo Stolovitzky. Crowdsourcing biomedical research: leveraging communities as
innovation engines. Nature Reviews Genetics, 17(8):470–486, 2016.

Julia A. Schnabel, Christos Davatzikos, Gabor Fichtinger, Alejandro F. Frangi, and Carlos Alberola-
López. Special issue on miccai 2018. Medical Image Analysis, 58:101560, 2019. ISSN 1361-8415.
doi: https://doi.org/10.1016/ j.media.2019.101560. URL https://www.sciencedirect.com/
science/article/pii/S1361841519301021.

Dava Sobel. Longitude: The true story of a lone genius who solved the greatest scientific problem of his
time. Macmillan, 2005.

Gustavo Stolovitzky, DON Monroe, and Andrea Califano. Dialogue on reverse-engineering assessment and
methods: the dream of high-throughput pathway inference. Annals of the New York Academy of Sciences,
1115(1):1–22, 2007.

15

https://doi.org/10.1162/coli_a_00032
https://hal.inria.fr/hal-03629462
https://hal.inria.fr/hal-03629462
https://www.sciencedirect.com/science/article/pii/S1361841519301021
https://www.sciencedirect.com/science/article/pii/S1361841519301021


STOLOVITZKY et al.

Devin P. Sullivan, Casper F. Winsnes, Lovisa Åkesson, Martin Hjelmare, Mikaela Wiking, Rutger Schut-
ten, Linzi Campbell, Hjalti Leifsson, Scott Rhodes, Andie Nordgren, Kevin Smith, Bernard Revaz, Bergur
Finnbogason, Attila Szantner, and Emma Lundberg. Deep learning is combined with massive-scale citi-
zen science to improve large-scale image classification. Nature Biotechnology, 36(9):820–828, Oct 2018.
ISSN 1546-1696. doi: 10.1038/nbt.4225. URL https://doi.org/10.1038/nbt.4225.

James Surowiecki. The wisdom of crowds. Anchor, 2005.

Ines Thiele, Neil Swainston, Ronan MT Fleming, Andreas Hoppe, Swagatika Sahoo, Maike K Aurich, Hulda
Haraldsdottir, Monica L Mo, Ottar Rolfsson, Miranda D Stobbe, et al. A community-driven global recon-
struction of human metabolism. Nature biotechnology, 31(5):419–425, 2013.

Adrien Treuille and Rhiju Das. Scientific rigor through videogames. Trends in biochemical sciences, 39(11):
507–509, 2014.

Rohit Vashisht, Anupam Kumar Mondal, Akanksha Jain, Anup Shah, Priti Vishnoi, Priyanka Priyadarshini,
Kausik Bhattacharyya, Harsha Rohira, Ashwini G Bhat, Anurag Passi, et al. Crowd sourcing a new
paradigm for interactome driven drug target identification in mycobacterium tuberculosis. PloS one, 7(7):
e39808, 2012.

Jérôme Waldispühl, Attila Szantner, Rob Knight, Sébastien Caisse, and Randy Pitchford. Leveling up citizen
science. Nature Biotechnology, 38(10):1124–1126, 2020.

16

https://doi.org/10.1038/nbt.4225

	Brief history of crowdsourcing
	Types of crowdsourcing
	Collaborative competitions
	The ingredients for a collaborative competition
	Challenge Organization
	Challenge platforms
	Conclusions/perspective

