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Abstract

This chapter addresses how to minimize randomness in competition or benchmark judging. We
discuss scoring metrics, size of test data, error bars, splitting into phases, and score aggregation
methods. Our approach blends theoretical insights with practical guidelines, aiming to provide a
clear framework for effective decision making and reduced uncertainty.
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1 Introduction

Machine learning competitions, in many ways, resemble sport events. From the perspective of the
organizers, much like in sports, there’s a pursuit to rank participants fairly based on their skillset and
adherence to a specific set of rules. One of the primary objectives in these scientific competitions is
not just to crown a winner, but to address a particular problem or answer a scientific question. The
emphasis lies in judging the participants justly and, even more crucially, in assessing the merit of
their proposed solutions—the models—to make noteworthy advancements in problem-solving. It’s
vital to design tasks and evaluate contributions in a manner that fosters competitions with substan-
tive outcomes rather than ones that can be exploited, intentionally or otherwise. A well-structured
scientific competition can serve various purposes, such as stimulating research in a field or promot-
ing a specific research line.

Beyond the goal of generating significant, reproducible, and universal results, there’s a legal
aspect to consider. In many jurisdictions, gambling is stringently regulated. As competition or-
ganizers, it’s essential to distinguish these contests from games of chance. Often, the competition
rules explicitly state: “this is a skill-based contest in which chance plays no role.” However, this
isn’t always entirely accurate. Indeed, the cash prize might be awarded to a winner whose score is
not significantly distinct from other competitors, as illustrated by the Wheat Detection Challenge
(David et al., 2020), later in this chapter.

This chapter explores key aspects of organizing such competitions, including the selection of
the scoring metric (Section 2), determining the statistical significance of results (Section 3), and
addressing the challenge of score aggregation across various criteria (Section 4). For clarity, the
structure of the chapter is illustrated by the Figure 1.
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2 What metric for what purpose?

The evaluation metric is, obviously, the core of a challenge: it produces the value that everybody
is trying to optimize. This is why the choice of the metric is one of the most important part of the
definition of a problem. We have observed that the final ranking of methods is usually very sensitive
to the choice of metric (Caruana and Niculescu-Mizil, 2004). This is why this choice needs to be
made carefully: an unsuitable metric results in unsuitable solutions. Let’s take some examples of
such errors of design.

So, how to choose a metric that fits the problem? The variety of metrics that have been proposed
in the literature is so large that is hard to find one’s way. Thus, we present here the most used metrics
in several area of machine learning and explain their main qualities and shortcomings. General view
and survey of evaluation methods are provided by survey (Raschka, 2018; Herndndez-Orallo et al.,
2012).

In the following, we distinguish between performance metrics (e.g. accuracy), ethical and so-
cietal impact metrics (e.g. measure of fairness), resources consumption metrics (e.g. time con-
sumption) and evaluator-centric metrics (e.g. human evaluation). Note that many classification,
regression and clustering metrics are implemented! in the famous machine learning Python pack-
age Scikit-Learn (Pedregosa et al., 2011).

2.1 Performance metrics

In this section, we describe metrics commonly used as primary objective in classical machine learn-
ing problems: classification, regression, reinforcement learning and unsupervised learning.

CLASSIFICATION

A prediction task is called a classification problem when the possible outcomes to predict are
grouped in different classes (Grandini et al., 2020). The simplest setting involves only two classes
(binary classification, reviewed by Berrar (2019); Canbek et al. (2017)); classification tasks involv-
ing more than two classes are called multi-class classification. For instance, the classical problem
of handwritten digits recognition (LeCun and Cortes, 2005) is a multi-class classification. In multi-
label classification, each data point can be classified into several classes at the same time. The goal
is to use available data called X to obtain the best prediction ¥ of the outcome variable Y. In multi-
class classification, ¥ and ¥ can be seen as two discrete random variables that assume values in
{1,...,K} where each number represents a different class, and K is the number of distinct classes.

When classification algorithms output the probability that a sample from X belongs to a given
class; a classification rule is then employed to assign a single class. In binary classification, a thresh-
old can be used to decide the predicted class. In the multi-class case, there are various possibilities,
the most employed technique being selecting the highest probability value, commonly computed
using the softmax function (Grandini et al., 2020).

To give a general overview of the resemblance between classification metrics, we conducted an
experiment to empirically evaluate the correlation between common classification scoring metrics:
we computed rankings of the final models from AutoDL Challenge, independently on all 66 datasets
formatted for this competitions, and compared these rankings using Euclidean distance. The results
are presented graphically in Figure 2, scaled in a two-dimensional plot. Jaccard score and F1-score

1. https://scikit-learn.org/stable/modules/model_evaluation.html
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Figure 2: Multidimensional scale (MDS) plot illustrating the degree of correlation between scoring
metrics in a 2D space. The metrics are compared by computing Euclidean distance be-
tween the rankings they produced. This experiment was performed on the classification
tasks and models from AutoDL Challenge (Liu et al., 2021).

are confirmed to be very close?. The SAR metric (Caruana and Niculescu-Mizil, 2004), an average
between accuracy, AUC and root mean squared error (using 1 — RMSE), is well centralized, as it
was designed to be. Interestingly, balanced accuracy seems to be centralized between accuracy
and AUC. Loss functions, such as mean absolute error (MAE) and mean squared error (MSE), are
clearly distinct from classification metrics.

Selecting the right scoring metric for a classification task is important as it directly impacts
the evaluation and interpretation of the model’s performance. The main points we identified as
relevant to guide the selection process are the type of problem, the class balance and the real world
objectives.

Problem type: Consider the type of problem. Most classification metrics are defined as binary
classification metrics; however, they can be used to score multi-class problems, by breaking the
problem down into multiple binary problems. The problems can be broken down using either One-
vs-One (OVO) or One-vs-Rest (OVR) approaches. In the OVO approach, the pairwise score of all
pairs of classes is computed. In the OVR approach, the scores for each class is computed separately,
treating each class as the positive class and all other classes as the negative class. In both cases, the
problem is broken down into a series of binary problems, and the final score is obtained by aver-
aging all the scores, either using a simple average, or a weighted average. The OVO approach is
computationally expensive, as the number of scores to compute is w with K being the number
of different classes. For this reason, the OVR approach is mostly used in practice, needing only K
computations, one for each class. We consider only the OVR approach for the rest of this section.

2. https://stats.stackexchange.com/questions/511395/are-jaccard-score—and-fl-score-monotonically-
512378#512378
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Beyond its computational benefits, the OVR approach is favored due to its simplicity, making it
more interpretable for non-experts. It scales linearly as the number of classes grows, contrasting
with the exponential complexity of the OVO method. Furthermore, its prominence in modern ma-
chine learning tools, given the optimized implementations in popular frameworks, emphasizes its
relevance for real-world applications.

The simplest idea when it comes to score classifiers is to use rates of success. Precision, recall
and accuracy are metrics that simply count the successes and failures of the classifier. Intuitively,
accuracy is the likelihood that a randomly chosen sample will be correctly classified by the model.
The fundamental component of this metric is the individual units in the dataset, each of which holds
equal weight and contributes equally to the score. However, when considering classes instead of
individuals, some classes may have a high number of units while others have only a few. In such
cases, the larger classes will carry more weight compared to the smaller ones. When the dataset is
imbalanced, meaning that most units belong to one particular class, accuracy may overlook signif-
icant classification errors for classes with fewer units as they are less significant compared to the
larger classes.

Class imbalance: Consider the distribution of classes in the dataset. If there is a class imbal-
ance, using accuracy as a metric might not provide an accurate picture of the model’s performance.
In such cases, metrics like balanced accuracy or area under ROC curve (AUC) are more appropri-
ate. Balanced accuracy addresses this issue by giving each class equal impact on the score. This
is simply done using a weighted average of each class accuracy, weighted by the proportion of the
class in the test set. Despite having fewer units, smaller classes may have a disproportionately larger
influence on the formula. When the dataset is relatively balanced, meaning the class sizes are simi-
lar, accuracy and balanced accuracy tend to produce similar results. The main distinction between
the two metrics becomes apparent when the dataset exhibits an imbalanced distribution of classes.

Real world objective: Consider the real world impact of the problem and the cost of false
positive and false negatives. For instance, in medical diagnosis, a false positive (e.g. a healthy
person is diagnosed with a disease) can lead to unnecessary medical procedures and treatments,
causing harm to the patient. On the other hand, a false negative (e.g. a sick person is not diagnosed)
can result in a delay in treatment and a potentially fatal outcome. In this case, recall (the ability of
the model to identify all positive cases) is a relevant metric. Another example: in the finance sector,
false positives can lead to substantial revenue loss from incorrect trades or transactions, while false
negatives might result in missed opportunities. In such contexts, precision (the model’s capability
to correctly identify positive instances) and F/ score (a harmonized metric between precision and
recall) could be considered better choices for assessing the model’s efficiency.

REGRESSION

The prediction task is called a regression problem when the outcome is a continuous numeric value,
in contrast to a classification problem where the variable to predict falls into discrete categories.
For instance, predicting temperatures or road traffic from support variables are regression tasks. A
review of metrics for regression is given by (Botchkarev, 2018). Another survey concerns evaluation
methods for time series forecasting (Cerqueira et al., 2020).

The main points we identified as relevant to guide the selection process are the type of problem,
the scale of the target variable and the real world objectives.



Problem type: Consider the type of problem you are trying to solve. For example, for time-
series forecasting problems, metrics like mean absolute error (MAE), mean squared error (MSE),
and root mean squared error (RMSE) are relevant. For problems involving predicting counts, met-
rics like mean absolute percentage error (MAPE) and symmetric mean absolute percentage error
(SMAPE) might be more appropriate.

Scale of the target variable: Consider the scale of the target variable. If the target variable
is large, the absolute difference between the actual and predicted values will also be large, making
MAE, MSE and RMSE less interpretable. In such cases R-squared (coefficient of determination)
might be more appropriate metrics. R-squared has no units, can be compared among different tasks,
and has an intuitive interpretation.

Real world objective: Once again, consider the real world problems. For instance, if the prob-
lem involves predicting stock prices, the magnitude of the error is more important than the direction
of the error. In such cases, RMSE or MSE might be appropriate metrics. Another example: in the
field of climate modeling, the right choice of scoring metric vary depending on the problem. If the
goal is to predict global temperatures, metrics like mean absolute error (MAE) could be used to
evaluate the performance of the model. However, in predicting regional precipitation patterns, met-
rics like R-squared or explained variance score might be used to evaluate the ability of the model to
capture the complex spatial patterns of precipitation.

REINFORCEMENT LEARNING

Reinforcement learning (RL) consists, for an autonomous agent (e.g. robot), in learning what ac-
tions to take, based on experiences, in order to optimize a quantitative reward over time. The agent
is immersed in an environment and makes its decisions based on its current state. In return, the
environment provides the agent with a reward, which can be either positive or negative. The agent
seeks, through iterated experiments, an optimal strategy or policy, which is a function that associates
the current state with the action to be performed, to maximize the sum of rewards over time. This
setting makes the scoring procedure particularly problem-specific and prone to design flaws.

In reinforcement learning, overfitting occurs when the agent becomes too specialized to the
conditions of the training environment and is unable to generalize to unseen situations. This is a
common problem in RL because the training and the evaluation processes are usually conducted
on the same environment, rather than in two separate environments. This creates a situation where
the agent can memorize the optimal actions in the training environment without truly understanding
the underlying dynamics. As a result, the agent’s performance may appear to be much better than
it actually is, leading to a biased evaluation. This can be a serious issue in RL, as it undermines
the validity of the evaluation process and may result in the selection of sub-optimal algorithms or
policies. To mitigate this problem, it is important to separate the training and testing environments
and use different metrics and simulators for evaluation. This helps to unbias the evaluation process
and to ensure that the results accurately reflect the true performance of the agent.

Some research studying the evaluation of RL algorithms show that behavioral metrics play a
crucial role in determining the quality of a state representation, and in learning an optimal represen-
tation (Jordan et al., 2020; Lan et al., 2021). Existing methods, such as approximate abstractions
and equivalence relations, aiming at reducing the size of the state or action space by aggregating
similar states, are not effective for continuous-state reinforcement learning problems, due to their
inability to maintain the continuity of common RL functions and their tendency to generate overly



detailed representations that lack generalization. A behavioral metric in reinforcement learning is a
measure of an agent’s performance in an environment, based on its actions and observed rewards.
It can be used to evaluate and compare different reinforcement learning algorithms or policies. Ex-
amples include average reward per episode, success rate, and convergence speed.

According to Henderson et al. (2018), multiple trials with different random seeds are necessary
to compare performance, due to high variance. To ensure reproducibility, it is crucial to report
all hyperparameters, implementation details, experimental setup, and evaluation methods for both
baseline comparisons and novel work.

UNSUPERVISED LEARNING

Numerous tasks in machine learning lack a definitive ground truth for evaluating solutions. Termed
as unsupervised learning, this category includes a diverse range of tasks, from clustering and di-
mensionality reduction to data modeling, generation, and feature extraction. It also covers areas
with a more subjective nature, like automatic music composition, identifying molecules that bind to
COVID-19, and text summarization.

It is particularly challenging to design competitions for such unsupervised learning tasks, due
to the following reasons: the lack of ground truth, the diversity of solutions, and the subjectivity
in evaluation. Indeed, unlike supervised learning, unsupervised learning often lacks clear ground
truth, making it difficult to evaluate the results objectively. Also, unsupervised learning models can
often produce diverse solutions that are equally valid, making it challenging to select a single best
solution. Finally, the evaluation of unsupervised learning solutions can be subjective as it depends
on the understanding and interpretation of the evaluators.

In the case of distribution modelling and clustering, some clear performance metrics can be
identified. Prior research investigate the evaluation metrics for unsupervised learning (Palacio-Nifio
and Berzal, 2019) and clustering (Ben-Hur et al., 2002; von Luxburg et al., 2012). Typically, when
the goal in unsupervised learning is to learn the underlying data distribution, various loss func-
tions can be employed depending on the specific type of model:

* Maximum Likelihood Estimation (MLE): In probabilistic models, the goal is often to maxi-
mize the likelihood of the observed data.

* Kullback-Leibler (KL) Divergence (Kullback and Leibler, 1951): Measures the difference
between two probability distributions. It is often used with Variational Autoencoders (VAEs)
(Kingma and Welling, 2019) where one tries to minimize the divergence between the learned
distribution and the true data distribution.

* Reconstruction Loss: In models like autoencoders (Liou et al., 2014), the objective is to
reconstruct the input data from a compressed representation. The loss measures the difference
between the original input and its reconstruction.

» Wasserstein Distance (Earth Mover’s Distance) (Villani, 2009): Used in Wasserstein Genera-
tive Adversarial Networks (WGANSs) (Arjovsky et al., 2017) to measure the distance between
the generated distribution and the true data distribution.

To assess the performance of clustering methods, when no ground truth is available, the follow-
ing metrics and techniques can be used:



* [nertia (Sum of Squared Errors): Inertia measures the sum of squared distances between each
data point and its closest cluster center. Lower inertia values indicate tighter clusters and
better performance.

* Silhouette Score (Rousseeuw, 1987): This metric computes the average silhouette value for
all data points, measuring how similar a data point is to its own cluster compared to other
clusters. A silhouette score close to 1 indicates a well-partitioned dataset, whereas a score
close to -1 indicates poor clustering.

e Davies-Bouldin Index (Davies and Bouldin, 1979): This index measures the ratio of within-
cluster scatter to between-cluster separation. Lower values of Davies-Bouldin Index indicate
better clustering performance.

* Calinski-Harabasz Index (Calinski and Harabasz, 1974): This index evaluates clustering by
comparing the ratio of between-cluster dispersion to within-cluster dispersion. Higher values
of the Calinski-Harabasz Index suggest better clustering performance.

Although these metrics are valuable for tasks like distribution learning and clustering, they fall
short in assessing the performance of machine learning models in areas like text summarization or
artistic creation. In these scenarios, it is challenging to score the success. Interesting and effective
methods include human evaluation, employing other machine learning models as evaluators, and
using interactive adversarial frameworks.

Indeed, human evaluation can play a crucial role in assessing the performance of unsuper-
vised learning algorithms when traditional quantitative metrics may not fully capture the desired
outcomes, or when ground truth labels are not available. Human evaluation can provide valuable
qualitative insights and help ensure that the resulting patterns or structures discovered by the algo-
rithms align with human intuition and domain knowledge. To perform human evaluation effectively,
it is essential to establish clear guidelines for the evaluators, provide proper training, and, when pos-
sible, recruit multiple evaluators to increase the reliability of the assessment. Human evaluation can
be time-consuming and resource-intensive, so it is often used in combination with quantitative met-
rics to balance the efficiency and quality of evaluation. This approach is further discussed in Section
2.4.

Another interesting technique, that may become more popular in the future, is to use a model
used as a metric. For instance, a classifier trained on discriminating between two distributions (e.g.
fake and real) can be used to evaluate the performance of generative models. This can be compared
to the functioning of Generative Adversarial Networks (GAN) (Goodfellow et al., 2014), where the
output of a binary classifier is used to guide the learning of a generative model. When using another
machine learning model as a metric for unsupervised learning, it is important to remember that
the evaluation depends on the performance of the supervised model and the quality of the labeled
data. Therefore, the results should be interpreted with caution, as the evaluation might be biased or
limited by the chosen supervised model or the available data. This approach is discussed in Section
2.4.

Finally, adversarial challenges, where the solutions proposed by the participants are then used
as input data in the next phase, is potentially a good way of organizing challenges on unsupervised
learning tasks. Adversarial challenges design are explored in details in Chapter 12.

More generally, to overcome these challenges and organize unsupervised learning competitions
and benchmarks, it is essential to articulate the problem and describe the data comprehensively.



Evaluation methods must be defined considering the missing ground truth. Promoting collabora-
tion among participants can diversify the solutions. Involving domain experts in the evaluation
can enhance the result objectivity. Keeping participants informed about competition progress and
being open to adjustments can optimize the process. Lastly, providing evaluations using diverse
metrics can help participants gauge the pros and cons of their methods. By following these steps,
competitions can be designed to effectively evaluate the solutions to an unsupervised learning task
while overcoming the challenges of lack of ground truth, diversity of solutions, and subjectivity in
evaluation.

2.2 Ethical and societal impact metrics

Traditional evaluation metrics like accuracy, precision, and recall have long held the spotlight,
but there is so much more to consider when measuring a model’s real-world impact. In this sec-
tion, we dive into the lesser-known, unconventional metrics that are reshaping the way we assess
machine learning models. From fairness and privacy to interpretability and calibration, these in-
novative evaluation techniques change how we think about model performance and pave the way
for a more responsible, holistic approach to machine learning. Indeed, the performance metrics we
have reviewed in this chapter so far reflect only one aspect of the performance of the models: their
predictive abilities. Yet, in many applications, our concerns extend to other aspects, like the trust-
worthiness of the algorithms. This is particularly true in sensitive applications, where an algorithmic
decision could mean life or death.

FAIRNESS

Even if the mathematical definition of machine learning models does not necessarily contains unfair
or biased elements, trained models can be unfair, depending on the quality of their input data or
their training procedure. A model trained on biased data may not only lead to unfair and inaccurate
predictions, but also significantly disadvantage certain subgroups, and lead to unfairness. In other
words, the notion of fairness of models describes the fact that models can behave differently on
some subgroups of the data. The issue is especially significant when it pertains to demographic
groups, typically defined by factors such as gender, age, ethnicity, or religious beliefs. As machine
learning is increasingly applied in society, this problem is getting more attention and research, and
is subject to debate (Benz et al., 2020; Vasileva, 2020; Chouldechova and Roth, 2018; Chen et al.,
2018; Boratto et al., 2021). Some interesting ways to quantify fairness include:

Demographic Parity: This measure checks if the positive classification rate is equal across
different demographic groups. The formula is as follows:

DemographicParity : P(Y =1|[A=0)=P(Y =1|[A=1)

where A is a protected attribute (such as race or gender), Y is the target variable (such as approval
or denial) and where ¥ is the predicted value of Y. Demographic parity is a condition to be achieved:
the predictions should be statistically independent of the protected attributes.

Statistical Parity Difference: Related to the demographic parity, it measures the difference
between positive classification rate across different demographic groups. The formula is:

Statistical ParityDif ference = P(Y = 1|A=0) —P(Y = 1|A = 1)



Disparate impact: It calculates the ratio of the positive classification rate for a protected group
to the positive classification rate for another group. It is similar to the statistical parity difference,
but it is a ratio instead of a difference:

P(Y =1]A=0)
PY =1/A=1)

A value of 1 indicates that the positive classification rate is the same for both groups, suggesting
fairness. A value greater than 1 indicates a higher positive classification rate for the group with
A =0, while a value less than 1 suggests a higher positive classification rate for the group with
A = 1. However, it is important to note that disparate impact is a limited measure of fairness and
should not be used on its own. There may be cases where a higher positive classification rate for one
group is justifiable, for example if the group is underrepresented in the training data. Additionally,
disparate impact does not consider other factors such as false positive and false negative rates, which
may provide a more comprehensive view of fairness.

Disparatelmpact =

Equal Opportunity: This metric checks if the true positive rate is equal across different demo-
graphic groups. The formula is:

EqualOpportunity : P(Y =1|)Y =1, A=0) =P =1y =1, A=1)
As for demographic parity, it is a condition to be achieved.

Equal Opportunity Difference: This metric measures if the true positive rate is equal across
different demographic groups. The formula is:

EqualOpportunityDif ference=P(Y =1y =1,A=0)—P(Y =1y =1,A=1)

The same idea can be applied to false positive rates.

These are just a few of the metrics that can be used to quantify fairness in classification tasks.
It is important to note that fairness is a complex issue, and these metrics should not be used in
isolation. Instead, they should be considered in the context of the specific problem and the desired
outcome.

CALIBRATION

Classifiers usually return probabilities to indicate the confidence levels across different classes.
However, the question arises whether these confidence levels accurately reflect the classifier’s ac-
tual performance. As defined by Naeini et al. (2015); Guo et al. (2017), the notion of miscalibration
represents the difference in expectation between the confidence level (or probability) returned by
the algorithm, and the actual performance obtained. In other words, calibration measurement an-
swers the following question: is the confidence of the algorithm about its own predictions correct?
Promoting well calibrated models is important in potentially dangerous decision making problems,
such as disease detection or mushroom identification. The importance of calibration measurement
lies in the fact that it is essential to have a clear understanding of the confidence level that the al-
gorithm has in its own predictions. A well-calibrated algorithm will produce confidence levels that
accurately reflect the likelihood of a prediction being correct. In contrast, a miscalibrated algorithm



will either over or under estimate its confidence in its predictions, leading to incorrect or unreliable
outcomes. In applications where the consequences of incorrect decisions can be severe, it is of
utmost importance to have a well-calibrated algorithm. Misclassification of a disease can lead to
incorrect medical treatment and harm to the patient. Similarly, misidentification of a mushroom can
result in serious health consequences. In these scenarios, well-calibrated models can help ensure
that the decisions are made based on reliable predictions.

The calibration can be estimated using the Expected Calibration Error (ECE): this score mea-
sures the difference between the average predicted probability and the accuracy (i.e., the proportion
of positive samples) in bins of predicted probability. The formula for the ECE is given by:

M
B
ECE=Y M]accm—confm]
m=1 "

where M is the number of bins, B, is the set of samples in the m'" bin, n is the total number
of samples in the test data, acc,, is the accuracy of the m'" bin, and conf,, is the average predicted
probability in the m-th bin.

When computing the calibration, we derive the performance prediction directly from the model’s
output. Another interesting possibility is to ask the participants to provide an estimation of the gen-
eralization score of their method. Indeed, we can make a connection between the calibration and
the prediction of generalization error, more commonly estimated by a separated method. The Per-
formance Prediction Challenge (Guyon et al., 2006) focused on this problem.

INTERPRETABILITY AND EXPLAINABILITY

Given the complexities of machine learning models, the assessment of their interpretability and
explainability emerges as a considerable challenge. While both concepts are crucial for ensuring
trust and understanding in model predictions, especially in critical applications, measuring them
accurately is difficult, especially when models vary widely in their structures and underlying mech-
anisms. Interpretability and explainability are related but distinct concepts in machine learning.

Interpretability refers to the degree to which a human can understand the cause of a model’s
predictions. It refers to the ability to understand the internal workings of the model and how it
arrived at its decisions.

Explainability refers to the ability to provide a human-understandable explanation of the model’s
decision making process. It is concerned with the presentation of the reasons behind the predictions
to humans in a understandable form, e.g. through feature importance.

In summary, interpretability focuses on the transparency of the model itself, while explainability
focuses on the communication of the model’s behavior to a human audience. A wide survey on
interpretability is proposed by Carvalho et al. (2019). They stressed out how interpretability is
greatly valuable in one hand, but hard to define in the other hand. Another way to explain algorithms,
automatically, is the sensitivity analysis (Iooss et al., 2022). Sensitivity analysis is a technique used
to determine how changes in input variables of a model or system affect the output or outcomes of
interest.

Past competitions have been exploring the development and evaluation of explainable models,
such as the Job Candidate Screening Challenge (Escalante et al., 2017, 2018). It is a challenge
of first impressions and apparent personality analysis, on audio-visual data. The candidate models



have to predict apparent traits of people® (e.g. friendly or reserved, imaginative or practical) from
short videos, with a focus on the explanatory power of techniques: solutions have to “explain”
why a given decision was made. To this end, participants had to provide a textual description
that explains the decision (i.e. the prediction) made. Optionally, participants could also submit a
visual description to enrich and improve clarity and explainability. Performance was evaluated in
terms of the creativity of participants and the explanatory effectiveness of the descriptions. For this
evaluation, a set of experts in the fields of psychological behavior analysis, recruitment, machine
learning and computer vision was invited. We can note that, this way, the explainability component
of the challenge requires qualitative evaluations and hence human effort.

It is worth noting that some models are interpretable by nature, such as logistic regression
or decision tree. Some researchers make the point that there is a trade-off between interpretabil-
ity and models’ performance, especially for complex tasks, that seem to be requiring blackbox
models — huge deep learning neural networks. However, Rudin (2019) argues that this “accuracy-
interpretability trade-off” is an unfounded myth.

PRIVACY

Privacy must typically be measured when the candidate algorithms are generative models, modelling
a distribution of potentially confidential data. The goal in such a case is to use the generative
models in order to create artificial data that reassemble sufficiently the real data to be used in actual
applications, but not too much for private information to be leaked. A metric to estimate this trade-
off is the adversarial accuracy, that we introduced in Yale et al. (2019). Here is its definition:

n n

Algs = % (}11 Y 1(drs(i) > drr(i)) + % Y 1(dsr (i) > dsg(i))>

i=1 i=1
where the indicator function 1 takes the value 1 if its argument is true and 0 otherwise, T and S are
true and synthetic data respectively. d is an arbitrary chosen distance function, such as the Euclidean
distance. drs(i) represents the distance between the " point of T and its closest neighbor from S.
drr (i) is the distance between this i’ point and its closest neighbor in 7. Subsequently, dsz (i) and
dss(i) compare the i"* point of S to its closest neighbors in 7' and in S.

It is basically the accuracy of a 1-nearest-neighbor classifier, but the ideal score is not 1 (perfect
classification accuracy) but 0.5. Indeed, a perfect score means that each generated data point has its
closest neighbor in the real data, which means that the two distributions are overly similar. A score
of 0 would mean that the two distributions are too different, thus the practical utility is low. Hence,
a 0.5 score, where the closest neighbor of each data point can either be fake or real with the same
probability, is what guarantees a good privacy. These principles are illustrated with a toy example
in Figure 3. Alaa et al. (2022) proposes a similar approach.

One limitation of this method is that a proper measure of distance is needed. This is also
a strength because it means that the method is general and can be applied in different fields, by
selecting an adequate distance measure.

In the study of privacy, differential privacy and membership inference attacks are core concepts.

Differential privacy provides a robust framework to ensure that a trained model does not get
substantially influenced by the inclusion or exclusion of a single data sample from the dataset.
It employs a parameter € to quantify the privacy, with smaller € values meaning more privacy

3. The data was labeled by around 2500 annotators.
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Figure 3: Adversarial Accuracy (AA) is the performance of an nearest neighbor classifier that dis-
tinguishes between real data vs . The ideal value is AA = 0.5 (represented
by the plot in the middle). This is a bi-variate (X1 and X?2) illustrative example.

guarantees. It relates to the metric we proposed, which estimates the proximity between generated
data and training data. While our approach evaluate the privacy preservation at the scale of the
dataset, differential privacy focuses on individual-level privacy.

Inference attacks represent methods by which attackers deduce sensitive information using the
models’ output (or predictions). The adversarial accuracy metric intends, in some way, to mea-
sure the sensitivity of the model to these inference attacks. If generated data were nearly identical
to training data, adversaries might be able to get sensitive information. By ensuring a degree of
distance between original and generated data, the resistance against such attacks is improved.

Additionally, privacy concerns are not limited to synthetic data or generative models. Predictors
too can be the target of privacy attacks, as highlighted by Pedersen et al. (2022).

2.3 Resources consumption metrics

Resource consumption metrics quantify the energy, time, and data utilized by models, thereby pro-
viding insights into their efficiency and sustainability.

TIME AND MEMORY CONSUMPTION

It is useful to include the consumption of time, memory and energy of ML models in their evaluation
and comparison. There are two main approaches to take these into account: limit the resources and
track the use of resources. Both may imply in practice the use of code submission, as opposed
to results submission. In code submission competitions, the participants submit their models which
then get trained and tested on the servers, while in results submission competitions, the participants
work locally and upload their predictions to the platform. Code submission is therefore advised if
limiting or tracking the resource usage is part of the competition design.

The training and inference time, the size of the model, the memory used during the process
or even the energy consumption are variables that can be limited by design or measured and shown
on the leaderboard. Obviously, using the same hardware and evaluation conditions for all partici-
pants is needed in order to have a fair evaluation. The number of lines of code, or the number of
characters, can also be used as an indicator of the simplicity and practicability of the solution.
However, obviously, this indicator can be easily tricked by calling external packages and may need



a manual review. The simplest models that solve the task are preferable, for being less harmful for
the environment, less costly, deployable in weaker devices and easier to interpret.

A model that can produce the same results in less time is more desirable, as it reduces the
computational resources required and can lead to cost savings. This is especially important in
light of the current ecological crisis, as reducing energy consumption in computing can have a
significant impact on reducing the carbon footprint of technology. Additionally, models that are
faster to train and make predictions are more scalable and can be deployed in real-time applications,
further enhancing their utility. Thus, optimizing time consumption is a key factor in the development
of efficient and environmentally sustainable machine learning models.

ANYTIME LEARNING

Anytime learning refers to a learning paradigm in which a machine learning model or algorithm
incrementally improves its performance as it receives more data or training time. The key aspect of
anytime learning is that the model can produce meaningful results at any point during the learning
process, with its performance generally improving as it acquires more data or spends more time on
training. Anytime learning algorithms are particularly valuable in situations where resources, such
as time or computation power, are limited, or when it is essential to provide real-time or near-real-
time insights. These algorithms can be employed in various machine learning settings, including
classification, regression, and reinforcement learning tasks.

To evaluate the score in this framework, one can compute the Area under the Learning Curve
(ALC):

1y
ALC = [ s(t)dt
fo

where s(¢) is the performance score (obtained form a metric depending on the task) at timestamp
t. to and 1y refers to the first and last timestamps, and should be fixed to allow a fair evaluation and
comparison of the scores.

The time can be linear, or transformed at any scale:

arc= | 7 s()di (o)

where 7 is the transform function. For instance, a logarithmic scale transform can be used, in
order to give more importance to the first steps of training:

1) = log(1+1)
log(1+1)

The metric is depicted in Figure 4. Although both Model 1 and Model 2 converge to the same
score, Model 1 is favored in an anytime learning context due to its rapid performance improvement
across epochs. This advantage is evident from the larger area under its learning curve.

Any-time learning can be linked to multi-fidelity. Multi-fidelity methods in machine learning
refer to strategies that use various “fidelities” or qualities of data or models to speed up the learn-
ing process. For instance, one might use a simpler, faster-to-evaluate but less accurate model (low
fidelity) to guide the learning process in the early stages, and a more complex, accurate but compu-
tationally intensive model (high fidelity) later on. The idea is to use less expensive resources to get
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Figure 4: Example of learning curves for two models. While both Model I and Model 2 converge
to the same score, Model I boasts a larger area under the learning curve (ALC). Thus, in
an anytime learning context, Model 1 is the preferred choice.

an initial idea, and then refine it with more accurate but costlier methods. One could combine any-
time learning and multi-fidelity methods to create a learning process that is both time-efficient and
increasingly accurate. For example, in the early stages of an anytime learning algorithm, one might
employ low-fidelity models or data to quickly get a “good enough” model. As time allows, the
algorithm could then switch to using high-fidelity models or data to refine its understanding further.
This way, one gets the best of both worlds: a quickly usable model, while aiming for high accuracy
given more time. This combination could be particularly useful in scenarios where computational
resources or time are constrained but where the model quality also needs to be maximized, such as
real-time analytics, robotics, or complex simulations.

DATA CONSUMPTION

In machine learning, data is a key resource, and examining its consumption is relevant. The data
input of models can be divided into two dimensions: the number of samples, and the number of
features.

Number of training samples.

The amount of training data required is an interesting metric to consider when comparing differ-
ent models. As the saying goes, “data is the new oil”, but not every situation allows for the luxury
of vast datasets. In many real-world applications, gathering sufficient labeled data can be time-
consuming, expensive, or even impossible. Tracking and limiting data consumption is, therefore,
an essential aspect of model evaluation.

Monitoring data consumption can help identify algorithms that perform well with limited data,
making them more suitable for scenarios with small datasets. On the other hand, constraining the
quantity of available training data can encourage the development of models that are more efficient



in learning. This is typically called few-shots learning, where meta-learning techniques, such as the
k-shot n-way approach, are used. In this method, models are trained to quickly adapt to new tasks
using only a limited number of examples k from each class n. This k-shot n-way design was used
in MetaDL competition (El Baz et al., 2021). By intentionally limiting data consumption, meta-
learning promotes the development of models capable of generalizing better from smaller datasets,
ultimately enhancing their utility and adaptability in diverse situations.

Feature selection.

Feature selection is the process of selecting a subset of relevant features, or variables, for use in
model construction. Even if recent trends in deep learning tend to use the raw data without further
preparation, feature selection is an essential aspect of machine learning that aims at selecting the
most informative features for a given model. Proper feature selection can lead to simpler, more
interpretable, and faster-performing models that may also have improved generalization.

Two primary methods exist to assess feature selection: evaluation metrics and intrinsic met-
rics. Evaluation metrics, also called the wrapper approach, assess a model’s performance after
feature selection, based on the assumption that effective model performances signify well-chosen
features. The specific metrics used vary depending on the nature of the problem, such as classifica-
tion or regression, as elaborated previously in this chapter. On the other hand, intrinsic metrics, also
called the filter approach, evaluate the inherent quality or relevance of features without necessar-
ily training a model. They act as heuristics of the fundamental information contained within each
feature. Intrinsic metrics evaluate the significance of individual features without necessitating a full
model. These include the correlation coefficient, which gauges the linear relationship between a
feature and the target; mutual information, indicating the relevance of a feature based on how much
it informs about another variable; feature importance from tree-based models such as decision trees
and random forests; and variance threshold, where low-variance features, assumed less informative,
might be discarded. While Kohavi and John (1997) advocates for the wrapper approach (evaluating
trained algorithms), Tsamardinos and Aliferis (2003) argue that neither approach is inherently bet-
ter, and that both the learner and the evaluation metric should be considered. Hybrid approaches,
such as maximizing a performance score while minimizing the number of features, are efficient in
balancing between model accuracy and model simplicity.

In the NIPS Feature Selection Challenge (Guyon et al., 2004; Guyon et al.), participants were
ranked on the test set results using a score combining Balanced Error Rate (BER), the fraction of
features selected Fl.., and the fraction of probes found in the feature set selected F,.p.. The aim
of feature selection is often to reduce the feature set’s size without a significant loss in predictive
performance. Hence, a lower Fy., could be seen as favorable if the model’s performance remains
strong. “Probes” in the context of this challenge refer to “dummy” or “non-informative” features
that were intentionally added to the dataset. These features don’t have any relation or correlation
with the target variable and are essentially noise. Thus, a good feature selection algorithm should
ideally avoid selecting these probes, minimizing Fjppes-

Briefly: they used the McNemar test (McNemar, 1947) to determine whether classifier A is
better than classifier B according to the BER with 5% risk yielding to a score of 1 (better), O (don’t
know) or -1 (worse). Ties (zero score) were broken with Fy.,, (if the relative difference in Fr,,; was
larger than 5%). Remaining ties were broken with F),,;.. The overall score for each of the five
datasets was the sum of the pairwise comparison scores.



These methods of feature selection, from intrinsic metrics to challenge-specific criteria such as
those in the NIPS Feature Selection Challenge, play a role in optimizing machine learning models
simplicity, performance and interpretability, and reducing their data consumption.

2.4 Interactive and evaluator-centric metrics

Evaluator-centric metrics represent a paradigm in machine learning evaluation where the bench-
marking process actively involves specific evaluators, be they humans or models. Within this cat-
egory, there is a distinction: human-centric approaches primarily leverage human judgment and
perspectives, while model-centric approaches utilize predefined algorithms or models for evalua-
tion.

HUMAN-CENTRIC APPROACHES

In addition to the quantitative evaluation metrics discussed previously, it is essential to consider
more “human” evaluation techniques when assessing machine learning models. These approaches
place emphasis on qualitative aspects and subjective interpretation, bringing a human touch to the
evaluation process. For instance, in the case of text-to-image algorithms, manual inspection of
generated images can help determine whether the outcomes are visually appealing, coherent, and
contextually relevant. More generally, models that produce art, such as automatic music generators,
benefit from manual evaluation. Al art competitions typically involve human evaluation through
voting, such as the Deep Art competition of NeurIPS 2017*. IEEE CEC also hosts regular art
competitions °. Similarly, large language models can be subjected to psychological or behavioral
tests, where human evaluators rate the model’s responses based on factors such as coherence, em-
pathy, and ethical considerations. Such human-centric evaluation methods can reveal insights that
purely numerical metrics might overlook, providing a more nuanced understanding of a model’s
strengths and weaknesses. It is important to distinguish between human evaluation and the com-
parison to human performance. While both are human-centric approaches, the latter specifically
uses human abilities as a baseline for performance comparisons. A clear example of this approach
is how the Generative Pre-trained Transformers (GPT) (OpenAl, 2023), the famous large language
models, was tested using psychology tests (Uludag and Tong, 2023; Li et al., 2022), high-school
tests (de Winter, 2023) and mathematics tests (Frieder et al., 2023). By integrating these human-
oriented techniques into our evaluation toolbox, we can ensure that our machine learning models
are not only effective in solving problems but also resonate with the multifaceted nature of human
experiences.

MODEL-CENTRIC APPROACHES

A model can be used as a metric to evaluate the performance of other models, offering a dynamic
and specialized approach to scoring complex tasks. This approach can be called model-centric, as
opposed to human-centric approaches discussed in the previous section.

Typically, discriminative models can be used to assess the performance of generative models.
Examples of this were given with the use of k-nearest neighbor adversarial accuracy to compute
privacy, and the use of a classifier to score an image generation task. More generally, in this case, the

4. https://nips.cc/Conferences/2017
5. https://sites.google.com/view/ieeecec202lecmac/
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discriminant is trained to distinguish between real data from the target distribution and artificially
generated data, thereby judging how “realistic” the generated data appears to be. This approach
is similar to the learning framework of generative adversarial networks (Goodfellow et al., 2014).
However, as underscored by the metric of adversarial accuracy for privacy, a generative model that
completely deceives the discriminative model — in the sense that the discriminant gets an extremely
low score — is an indication of privacy leakage of the training data. In other words, if the generative
model performs exceptionally well within this adversarial framework, it raises concerns about its
ability to generate general and original data. To avoid this, an “originality” or “privacy” metric
should be invoked to measure the similarity, as mentioned in the Section 2.2. One distinct advantage
of employing a discriminative model for performance measurement is its ability to output numerical
values. Consequently, this form of performance assessment can easily be incorporated into a ranking
system or any quantitative evaluation framework. An illustration of this protocol can be found in
the Dog Image Generation challenge (Kan et al., 2019).

Another, more qualitative, way of measuring performance using models emerges through the use
of language models. Large Language Models (LLMs) can serve as evaluators on various Natural
Language Processing (NLP) tasks. For instance, in text summarization, an LLM can be employed
to measure the semantic coherence and relevance of generated summaries by comparing them with
the original text. The LLM could produce a likelihood score or even generate textual critiques to
indicate how well the summary captures the essence of the source material. When it comes to ex-
plainability, an LLM can analyze the output explanations of complex models to assess their clarity
and coherence. Naturally, as with any model-based metric, the initial prerequisite is to have confi-
dence in the reliability of the evaluating model. More broadly, LLMs can act as judges for smaller
models in a variety of NLP tasks. They can evaluate the quality of machine-generated translations,
assess the sentiment consistency in chatbot dialogues, or even measure the relevance of answers
generated by a question-answering system. These ideas were explored by the innovative competi-
tion Auto-Survey Challenge 2023° (Khuong and Rachmat, 2023). In this challenge, the participants
propose Al agents capable of composing scientific survey papers and reviewing them. Such Al
agents thus operate either as authors or reviewers. API calls to chatGPT were used to output the
scores of conclusion (how well the conclusion highlights the main findings in the text) and contribu-
tion (relevance of the paper). To bridge between qualitative and quantitative outputs, the organizers
asked the LLM to provide a number in Likert scale (Likert, 1932), for better differentiation between
good and bad results (for instance, I - Strongly Disagree, 2 - Disagree, 3 - Neutral, 4 - Agree, 5
- Strongly Agree). They also made clear and complete prompts, detailing how the characteristics
should be evaluated.

Using a model as a metric offers many advantages and may even be essential for certain applica-
tions, but it also comes with its notable drawbacks and challenges. One of the immediate concerns
is the additional layer of complexity and computational cost involved in using one model to evaluate
another, which becomes particularly problematic when computational resources or time are limited.
This issue is closely followed by questions regarding the reliability and consistency of the metric
model itself. If the model employed as a metric has inherent weaknesses or biases, these could be
transferred to the evaluation of the models being evaluated. The method’s potential unreliability,
complexity, and sensitivity to data and hyperparameters can result in difficult interpretations and
risk misleading evaluations, especially in critical fields like healthcare and legal decision-making.

6. https://www.codabench.org/competitions/1145/
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Figure 5: The (very tight) leaderboard from the Global Wheat Detection challenge (David et al.,
2020) on Kaggle (Goldbloom and Hamner, 2010). Even if the scores are close, only the
top-3 candidates share the $15,000 cash prize.

This vulnerability introduces the risk of “circular reasoning”, particularly when the metric model is
trained on similar data or shares architectural components with the model being evaluated, poten-
tially leading to overly optimistic results. Typically, the organizers of the Auto-Survey Challenge
2023 reported that chatGPT was usually overly optimistic and tended to grade its own work better
than actual human work.

Despite these various challenges, using models as metrics can provide nuanced and context-
specific insights that are hard to capture with traditional evaluation methods. This approach should
be applied with caution and rigorous methodology to ensure the most reliable and informative re-
sults.

3 How to make a statistically significant evaluation

We stressed out that the selection of appropriate evaluation metrics is critical. Equally critical is
ensuring that the evaluation is statistically significant. For a robust evaluation, a sufficiently large
test set is essential, along with the computation of score error bars. The figure 5 shows an example of
a tight leaderboard from a past competition. In this particular competition, the third place candidate,
qualified for a prize, only has a 0.0001 difference in score with the fourth place candidate. This thin
margin between the third and fourth place highlights potential concerns regarding the evaluation
methodology. This section presents methods for computing error bars, and addresses questions
such as the ideal size of the test set. The goal is to provide methods to minimize the influence of
randomness in competitions.



3.1 Error bars

Error bars are the representation of the uncertainty of a measurement, allowing to distinguish score
estimations between candidate models. There are three common types of error bars: standard
deviation (STD), standard error of the mean (SEM) and confidence interval (CI) (Krzywinski and
Altman, 2013).

The standard deviation consists in the average distance between each sample and the mean:

The use of n — 1 in the denominator when computing the sample standard deviation is a result
of what’s called Bessel’s correction (Bishop, 2006; Murphy, 2012). The main reason for using n — 1
instead of n is to provide an unbiased estimate of the population variance and standard deviation
when computed from a sample.

The standard error of the mean, if the n observations are statistically independents, is the
standard deviation divided by the square root of the sample size:

sem =2

Vn

The confidence interval is calculated by using the standard deviation to create a range of values
likely — to a given probability (commonly 95%) — to contain the true population mean. This tech-
nique requires the computation of approximations in practice, and is not commonly used to analyze
competitions and benchmarks in machine learning.

Given this context, what are the sources of variability in our area of interest? Specifically, in
supervised learning, performance estimation often involves comparing model predictions with a test
set’s ground truth. Here, the variability comes from the model in one hand, and the data in the
other hand.

The model can be stochastic during three different processes: the initialization, the learning
process and the prediction process. Note that each of these processes is not necessarily stochas-
tic in nature, and many models are completely deterministic. Even models that involve random
initialization, such as neural networks, can be made deterministic by fixing a random seed’. This
raises a question: should we impose to participants to fix a seed in order to reduce the variability
of their methods? The main benefit of fixing the random seeds being improving the reproducibility
of the methods. In general, having high variation of the results due to initialization can be a sign of
low generalization capabilities. However, fixing the seed is controversial as it overlooks variability
factors. In previous contests, we executed participants’ code multiple times, choosing their poorest
performance to motivate variance reduction. Although averaging multiple runs decreases variance,
organizers shouldn’t do this as it may favor high-variance methods; participants should ensure their
methods have low variance.

The data is inherently stochastic, originating from real-world observations that can be consid-
ered as samples from unknown distributions. This randomness is compounded by variations in
labeling quality, splitting into training and test sets, and other factors. One effective ways to mit-
igate these sources of variance is through high quantities of data. While it is often stated that the

7. A random seed is a number used to initialize a pseudo-random number generator, which is then used to generates the
weights. A fixed random seed means that the number generator will always returns the same values.



quality of a machine learning model is largely determined by the quantity of available data, it is at
least safe to say that abundant data enhances the reliability of model evaluations, as will be explored
in subsequent sections.

The authors of Bouthillier et al. (2021) shows that most evaluations in deep learning focus on
the impact of random weight initialization, which is only a small source of variance, comparable
to residual fluctuations from hyperparameter optimization. However, this variance is much lower
compared to the variance caused by splitting the data into training and test sets.

STATISTICAL HYPOTHESIS TESTING

Statistical hypothesis tests are used to decide whether the data at hand sufficiently support a par-
ticular hypothesis. In our area of interest, hypotheses often involve comparisons, such as whether
algorithm A outperforms algorithm B or if the performance of various algorithms aligns with that of
the baseline method. We mostly make multiple comparisons of multiple algorithms, multiple com-
parisons between two algorithms, or comparison between algorithms to a control (the baseline).
The tests used for different scenarios are detailed in Japkowicz and Shah (2011). Even if the clas-
sical null hypothesis statistical tests (NHSTs) are widely used, recent research advocate for the use
of Bayesian analysis instead (Benavoli et al., 2017). The authors present the Bayesian correlated
t-test, the Bayesian signed rank test and a Bayesian hierarchical model that can be used for compar-
ing the performance of classifiers, arguing that it solves the drawbacks of the frequentist tests. One
of the drawbacks underlined is the fact that NHST computes the probability of getting the observed
(or a larger) difference between classifiers if the null hypothesis of equivalence was true, which is
not the probability of one classifier being more accurate than another, given the observed empirical
results. Another common problem is that the common usage of NHST relies on the wrong assump-
tions that the p-value is a reasonable proxy for the probability of the null hypothesis (Demadr, 2008).
Other areas of science are also moving from NHSTs to Bayseian approaches, as evidenced by the
journal Basic and Applied Social Psychology, which in 2015 banned the use of NHSTSs and related
statistical procedures (Trafimow and Marks, 2015).

In practice, in competitions, the statistical testing boils down to ranking participants and declar-
ing ties. In the following, we examine the use of bootstrap and cross-validation as estimators of the
variance in models performance.

BOOTSTRAP AND CROSS-VALIDATION

In the field of machine learning, cross-validation and bootstrapping are widely used ways of com-
puting the bias and variance of models performances. These two methods are inherently different,
as cross-validation involves re-training the model from scratch several times, while bootstrapping
only uses re-shuffling of the test samples and predictions, making it quicker to compute. Validation
methods help to prevent overfitting, a common issue in machine learning where a model performs
well on the training data but poorly on new unseen data.

The K-fold cross-validation (CV) (Hastie et al., 2009) involves dividing the original data into
several parts (folds), where one part is used for testing and the rest for training. This process
is repeated multiple times, each time with a different part used for testing, and the performance
metrics are averaged across all iterations to get a final evaluation of the model.

Bootstrapping (Efron and Tibshirani, 1993) involves generating multiple subsets of the original
data set, using sampling with replacement, each having the same size as the original set. The
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Figure 6: Schema of K-fold cross-validation (left) and bootstrapping (right). The cross-validation
implies training on subsets of data with size determined by K. Bootstrapping involves
sampling with replacement the test data, thus implying duplicated and missing samples
in each evaluation. There is no limit to the number of re-sampling (bootstraps) that can
be performed.

algorithm is then evaluated on each subset (known as a “bootstrap sample”). The performance
metrics are averaged across all bootstrap samples to get a more robust evaluation of the algorithm.

K-fold CV and bootstrapping are illustrated and compared in the Figure 6. In both cases, the
variance can be computed on the set of scores obtained. Note that, the bootstraps and the folds not
being independents, we can’t compute the standard error (dividing by the square root of the number
of scores), as mentioned in Section 3.1.

The question of determining the best methods for estimating a model’s generalization error
received substantial attention in the literature, as evidenced by numerous studies (Nadeau and Ben-
gio, 2003; Bengio and Grandvalet, 2004b; Markatou et al., 2005; Kohavi, 1995a; Zhang and Yang,
2015a; Dietterich, 1998; Tsamardinos et al., 2018; Esbensen and Geladi, 2010; Molinaro et al.,
2005; Langford, 2005b,a; Forman and Scholz, 2010). This problem is deep and the suitability
of an estimator appears to depend both on the evaluated models and the data they are evaluated on.
Some empirical evaluations of generalization error estimators have been conducted (Kohavi, 1995b;
Zhang and Yang, 2015b), and advise for a 10-fold CV. Top participants of the Performance Predic-
tion Challenge (Guyon et al., 2006) used various cross-validation techniques to minimize average
guess errors. The top performer employed virtual leave-one-out (VLOO) cross-validation for kernel
classifiers, optimizing loss function through intensive cross-validation and using fresh data splits for
re-estimation. While many preferred standard 10-fold cross-validation for hyperparameter tuning,
others experimented with methods like bagging with bootstrap re-sampling or using challenge val-
idation sets for predictions. Bengio and Grandvalet (2004a) demonstrate that, when dealing with
simple cases, neglecting the dependencies between test errors can result in a bias that is roughly
equal to the variance. These experiments highlight that one must exercise caution when interpreting
the significance of differences in cross-validation scores.

Bootstrapping is more practical due to its computational efficiency and can be applied directly
to results, eliminating the need to access the underlying algorithms (e.g. when evaluating results



submissions). Therefore, bootstrapping is highly valuable in the context of competitions and bench-
marks, as it enables variance calculations without the need for computationally intensive operation.

WITHIN GROUP AND BETWEEN GROUP VARIANCE

It is common to have multiple levels of granularity when computing scores and error bars. The
highest granularity level is the level of data points, or samples. Samples can be grouped in lower
granularity levels, such as tasks or datasets. Indeed, each task has a unique test set, leading to a
distribution of scores for each algorithm on each task. This can also be defined as within group
variance, the variance between the samples of a dataset, and between group variance, the variance
between the tasks.

In this situation, the variance can be studied by invoking the law of total variance. The law
of total variance (Weiss, 2005), also known as Eve’s law, decomposes the variance of a random
variable into two parts: the expected value of the variances conditioned on another random variable,
and the variance of the expected values conditioned on that same random variable. Formally, let X
and Y be two random variables. The law of total variance states:

Var(X) = E[Var(X|Y)] + Var(E[X|Y])

It naturally resonates with the concept of multi-granularity variance in the context of machine
learning and algorithm evaluation. The overall variance in the performance of the algorithms (with-
out considering tasks) is represented by Var(X). The expected variance within each task (given the
task) is similar to E[Var(X|Y )], where ¥ denotes the specific task. The variance in the average per-
formance of the algorithms across tasks is represented by Var(E[X|Y]). It dissects the total variance
of algorithm performance into parts: one due to inherent variability within each task, and another
due to the variability in the algorithm’s relative performance across different tasks. This view al-
lows researchers and practitioners to understand the robustness of an algorithm across tasks and the
variability of performance within specific tasks.

To dive more in-depth into this multi-level granularity scenario, we conducted experiments on
the models’ predictions from the AutoML (Guyon et al., 2019) and AutoDL (Liu et al., 2021) Chal-
lenges benchmarks. For each model, we estimated the within group and between group variance
and compared the results. Our empirical experiments suggest that the highest granularity level ex-
hibits lower variance of scores. Figure 7 shows the standard deviation of the ranks obtained by each
participant of the AutoML and AutoDL challenges. In these challenges, the candidates are evalu-
ated on a set of datasets, with a test set for each dataset. We can therefore compute the standard
deviation of the ranks of each candidate, by varying the samples (high granularity) or the datasets
(low granularity). This computation was performed using bootstraps, and highlights the difference
in deviation depending on the granularity.

3.2 Size of test set

A crucial consideration is determining the test set size that provides a reliable error rate estimation.
This should be the number one worry of the organizer: having enough test data to enable a robust
judgement of the candidates. In the case of classification, Guyon et al. (1998) suggest as a rule of
thumb to use n = @, where n is the test set size and p is the error rate of the best classifier, as
estimated, for instance, by the human error rate. Hence, the better your classifier, the bigger your

test set needs to be in order for you to compute precisely the error rates. In the case of imbalanced
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Figure 7: Average and standard deviation of ranks of AutoDL (left) and AutoML (right) candidates.
The deviation is computed on bootstraps of data samples (high granularity) and bootstraps
of datasets (low granularity).

classes, one can base this analysis on the size of the smallest group, or even regroup the least
represented classes. More generally, outside of classification, the absolute precision on the scores
or means can be used to separate the participants.

Recently, Guyon introduced a refined formula, which holds for all additive losses. The formula
gives the sample size n required to get a given precision v and confidence k:

2
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Where u represents the mean error of the model evaluated, and ¢ represents the standard devia-
tion of the error rates. Interestingly, to increase the precision v by one decimal, 100 times more test
examples are needed. k, u and ¢ are squared, also indicating that the number of samples needed
grows quickly under the influence of the error rate, the variance and the targeted confidence.

We highlight the importance of the number of test samples in an experiment conducted on
tasks from the AutoDL Challenge (Liu et al., 2021). Only the datasets having less than 50,000 test
samples were kept, for improved readability of the results. The experiment, done independently on
each dataset, consist in increasing gradually the number of test samples used to compute the metrics
and rank the candidate models. The size of the test set is therefore increased between 1 and m,
m being the total number of test samples of the dataset. For each intermediate value i, we sample
with replacement (bootstrap) i samples from the test set, and compute a ranking of the algorithms
according to the scores obtained on this test set of i samples. We perform # = 5000 trials of this
procedure, resulting in ¢ different rankings, on which we compute the ranking stability using the
Kendall W concordance measure. The number of candidates 7 is fixed in this experiment. n should
not have an impact on the value of the stability itself, but only the variance of this value.

The results, given in Figure 8, indicate that, unsurprisingly, the stability increase with the num-
ber of test samples. A value of stability of 1 means that the ranking of all methods does not change
when bootstrapping the test samples. In this experiment, most datasets converge into a stability near
1 when the number of test samples reaches 10*. This indicates that the proposed models are well
separated by the tasks. In the presence of ties, the stability converges to a value below 1. Under
1,000 samples, the rankings are unstable, meaning that there is an insufficient number of samples
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Figure 8: Evolution of the ranking stability depending on the number of test samples used to score
the candidates. The stability is the Kendall W measure computed on repeated trials. Each
line is an independent dataset, and colors are displayed for readability.

to significantly rank the candidates by performance in the case of this benchmark. For benchmarks
where the models are numerous and harder to separate, more than 10* may be required in order to
obtain a significant final ranking.

3.3 Avoid overfitting: staged evaluation
PUBLIC AND PRIVATE LEADERBOARDS

In order to do a reliable evaluation, you must divide the data in at least three sets: train, valida-
tion and test. Note that validation and test sets are also commonly named “development and final
phases™® or “public and private leaderboard”. In some competitions, these sets contain distinct tasks
or datasets; the validity of the argument still holds in these cases.

The training set is fundamental for model building. It includes both the features and the labels
(i.e., the ground truth), which enable the model to learn the underlying patterns in the data. The
validation set serves as an immediate check for how well the model is generalizing to unseen data.
Although the ground truth is hidden, participants can get feedback on their performance. This en-
ables them to tweak their models for improvement. It acts as a “sandbox’ for understanding how the
model performs on data it hasn’t seen before but could potentially overfit to if used improperly. The
test set is the ultimate arbiter of a model’s generalization capability. No feedback on performance is
provided, preventing any last-minute tweaking that could artificially inflate the model’s evaluation
metrics. This is summarized in table 1. Ideally, these sets should share a similar data distribution,
unless concept drift or shift is an inherent aspect of the problem being addressed.

8. Other synonyms of development phase include feed-back phase and practice phase.



The test set plays a critical role in this ecosystem by serving as a “firewall” against overfitting,
since participants don’t get feedback on their test set performance until the competition concludes.
Indeed, receiving a repeated feedback from the leaderboard after each submission can lead par-
ticipants to overfit their models to the validation data. The purpose of the test set is to evaluate
performance on entirely new, unseen data, thereby ensuring that the winning solution is general
rather than only excelling on the validation data. On a positive note, this empirical study (Roelofs
et al., 2019), conducted on 120 Kaggle competitions, suggests that the overfitting between devel-
opment and final phases (public and private leaderboards) is not common. This could either mean
that most participants are adhering to best practices or that the dataset sizes and complexities are
sufficient to mitigate the risks of overfitting.

The importance of splitting data into at least three sets — train, validation, and test — cannot
be overstated for ensuring both the reliability and generalizability of machine learning models.
This is even more crucial in competitive settings, such as machine learning competitions, where the
temptation to fine-tune models based on leaderboard performance can potentially lead to overfitting.
Some past competitions allowed participants to fine-tune their models during the final phase, which
is generally not a good practice. It blurs the lines between validation and testing, compromising the
integrity of the evaluation process. A well-structured competition should aim to measure a model’s
ability to generalize to new, unseen data, and letting participants fine-tune their models based on
test set performance undermines this objective.

Train | Validation | Test

Can participants access ground truth? | YES NO NO
Can participants obtain a score on it? | YES YES NO
Can organizers obtain a score on it? | YES YES YES

Table 1: Train, validation and test sets. Here, the validation set refers to testing data hidden from
participants; not to be confused with the validation procedure they can perform on the
train set. The test set is for the final evaluation, avoiding leaderboard overfitting.

FILTERING PARTICIPANTS TO FINAL PHASE

While we do not declare the winner based on the validation set results in order to avoid “partici-
pants overfitting”, this does not prevent another type of overfitting: “organizer overfitting”.

The ambition of competitions is generally to recommend algorithms that could perform well on
new tasks resembling that of the competition. Thus competitions are a problem in which the orga-
nizers perform a learning task: from the task(s) of the challenge, they select an algorithm that should
perform well on new future tasks. Organizer overfitting occurs when the number of participants is
large and rankings are noisy, increasing the chance of poorly selecting a winner. Competition or-
ganizers face a sad paradox: the larger the number of participants, the more “successful” their
competition, but also the greater the risk to overfit the particular competition setting.

A heuristic often employed in sports, chess, and other types of competition is to use eliminatory
trial runs to filter participants for the final competition phase. It has been highlighted that gener-
alization can be improved by using the first phase of competition as a filter in machine learning
competitions (Pavao et al., 2022b). The method simply consists in keeping only the top-k par-
ticipants of the development phase into the final phase. However, determining the optimal k, the



number of top participants that we allow to access the final evaluation to optimize generalization, is
hard to determine in practice.

A conservative choice of k that is preferable in practice, is to eliminate participants who do
not outperform the baseline methods provided by the organizers with the “starting kit” (which
may include well performing methods from previous challenges). This should be more acceptable
to the participants than setting a hard threshold on the number of entrants of the final phase, and
will at least eliminate the least serious participants who just submit the “starting kit”.

THE DANGERS OF SPLITTING

We have seen that splitting the data or tasks for training, validation and testing is necessary in
order to evaluate participants fairly and avoid overfitting. It is common practice to completely
shuffle randomly all data samples before splitting. This strategy assumes that data samples are
independently and identically distributed across sets, avoiding to bias the evaluation towards one set
or another. However, this approach can often yield misleading results, particularly in specialized
domains where data naturally clusters into groups.

Consider a dataset composed of n microscopic images of cells collected from m different pa-
tients. These images aim to train a model for automated diagnosis, designed to generalize to new,
previously unseen patients. If data splitting is executed at the image level, rather than the patient
level, there’s a high risk of overestimating model performance. In such cases, the model’s appar-
ent success in validation may not translate into effective generalization. This misleading effect is
sometimes referred to as “voodoo machine learning” (Saeb et al., 2016). To better evaluate model
performance in such scenarios, it’s crucial to perform data splitting at the patient level, as illus-
trated in Figure 9, ensuring that all images from the same patient are grouped together in one of the
training, validation, or testing sets.

The First Impressions Dataset (Escalante et al., 2018), utilized in various challenges, presents
a similar data-splitting dilemma. The dataset consists in different videos of the same individuals,
captured at different time intervals. to group all videos of the same individual into a single set—be it
training, validation, or testing—to get a more accurate measure of the model’s ability to generalize
to new, unseen individuals. This approach reduces the risk of overfitting and better prepares the
model for real-world applications.

More generally, all applications where the data are stratified in two or more levels must be
split in a manner that respects these hierarchical structures to ensure accurate evaluation and robust
generalization.
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Figure 9: Illustration of several possible levels of data splitting. Here, the samples coming from the
same source (the same person or element of the first level of splitting) should be kept in
the same subsets of data to avoid overfitting.

4 How to fuse multiple scores

When judging and ranking the participants of a contest, we often need to combine the results from
multiple criteria. This multi-score setting can emerge from different scenarios in machine learning
competitions: when the models are tested on a set of tasks or datasets, when there are several
evaluation trials (e.g. using cross-validation), or when multiple metrics or measures are used to rank
the models. The case of having multiple heterogeneous metrics can typically arise when combining
primary objective and secondary objective metrics when ranking candidate models. This problem,
in a more general form, can be referred as the problem of ranking (Kendall and Smith, 1939): the
goal is to rank a set of “candidates” %, using the scores attributed to each of them by a set of
“judges” _Z. A judge here is simply any scoring procedure, hence producing a list containing one
score for each candidate.

As each judges attributes a score to each candidates, the data of the problem can be represented
by a score matrix M, as shown in Table 2. The problem then consists in using a ranking function
f R — R" to obtain a single ranking of candidates r = rank(f(M)), with the function rank :
R" — R is defined as follows: Vi € {1,...,n}, rank(v); = 1+Y ;2 1y,>y, + % Yjzily=v,.

‘ Judge 1 ‘ ‘ Judge m ‘
Candidate 1 | scoreq;

oo score; Jj
Candidate n scorey,

Table 2: Score matrix. The judges can be of various nature (tasks, metrics, etc.). The output scores
can also be of various types (real numbers, integers or ranks).

Table 3 shows an example of such problem. Depending on the ranking function f chosen, the
final ranking r will vary. Therefore, what is the good method to use? Intuitively, we want the final



ranking to represent as best as possible the opinions of all judges and to be congruent in this sense.
However, this is a ill-defined objective. We can only propose methods that aim at answering this
problem, and try to understand the underlying properties of the proposed methods.

Judge 1 | Judge 2 | Judge 3 | Judge 4
Candidate 1 0.8 0.5 0.7 0.5
Candidate 2 0.6 0.9 0.4 0.5
Candidate 3 0.4 0.7 0.8 0.5

Table 3: An example of a score matrix. A ranking function f takes a score matrix as input and
returns a final ranking r of the candidates.

We present the most common ranking functions in Section 4.1, their properties in Section 4.2
and give guidelines in Section 4.3.

4.1 Ranking functions
RANDOM DICTATOR

A straightforward approach to deriving a ranking from a matrix of scores involves uniformly select-
ing a judge at random and then adopting their judgment as the definitive ranking. This method is
referred to as the random ballot or the random dictator. While it may initially seem counter-intuitive
or even absurdly incorrect, it’s astonishing how prevalent this method is in reality. In essence, the
random dictator is omnipresent. Whenever we don’t tackle a ranking problem head-on, but rather
rely on a singular score to rank objects, we effectively permit the outcome to be governed by chance.
This isolated score is typically drawn from a “mother distribution” and is consequently chosen at
random. Examples of such scenarios include instances without re-runs, those lacking bootstrap re-
sampling, or cases focusing on just one task. In such situations, the influence of the random dictator
becomes evident.

MEAN AND MEDIAN

Mean and Median are average judges, obtained by either taking the mean (average value) or the
median (middle value) over all judges, for each candidate. These two approach are fairly simple
and very common in practice, especially the mean.

A potential issue with the mean is its sensitivity to extreme values, meaning that all judges don’t
have an equal impact on the outcome, especially if the scores are not normalized on the same scale,
or are of different nature. The median leverage a bit this bias. On the other hand, if the scores are of
similar nature, i.e. independently sampled from the same distribution, for examples several re-runs
of the same experiment, then the mean naturally computes and converges to the expected value as
the number of judges m increases, as stated by the central limit theorem (Anderson, 2010) and the
law of large numbers (Evans and J.S.Rosenthal, 2004).

AVERAGE RANK

Average rank, or Borda count, is defined as follows:
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It has the interesting property of computing a ranking which minimizes the sum of the Spearman
distance with all the input judges, as shown by Kendall and Gibbons (1990).
PAIRWISE COMPARISONS

FPairwise comparisons methods give scores based on comparisons of all pairs of candidates:

1
(n—1) jZ#W(Ci’CjO 1<i<n

where w(c;,¢;) represents the performance of ¢; against ¢;. We can define different pairwise
methods by designing different w functions:

ron = (

» Copeland’s method: w(u,v) = 1 if the candidate u is more frequently better than the candidate
v across all judges, 0.5 in case of a tie, and 0 otherwise.

U — Vi

* Relative Difference: w(u,v) = %ka:l P

In pairwise comparison methods, when a candidate beats all other candidates, it is a clear winner
to be ranked first. If a candidate beats all other according to Copeland’s method, it is said to be
the Condorcet winner. However, there is no always a candidate that outplay all its opponents.
This is because the majority preferences can be cyclic, thus exhibiting what is called a Condorcet
paradox (Gehrlein, 1997). This property can be illustrated using Condorcet graphs, a graphical
representation of pairwise comparisons between candidates. An arrow is drawn from one candidate
to another when it performs better. Examples of such graphs, with a clear Condorcet winner, and
exhibiting a cycle, are given in Figure 10.

OPTIMAL RANK AGGREGATION

Optimal rank aggregation (ORA) methods are a family of ranking methods that consist in propos-
ing a distance function d : R” x R" — R and finding a ranking r which minimizes the following
objective function:

i(r)= Y d(r.j)
i€s

Some well-known distance functions that can be used are Kendall’s 7 distance, Spearman’s
distance or the Euclidean distance.

The ORA using Kendall’s 7 as a distance function is known as the Kemeny-Young method. It has
interesting properties such as being a Condorcet method and satisfying Local IIA (defined below);
however, its computation is NP-Hard. The high complexity of the Kemeny-Young method prevented
us from including it in the experiments.

The ORA using the Spearman distance also has interesting properties and is computationally
linear as it produces the same ranking as the average rank method (Kendall and Gibbons, 1990), as
mentioned earlier.



(a) Candidate 0 is the Condorcet winner. (b) There is no Condorcet winner.

Figure 10: Condorcet graphs where vertices represents candidates, and where there is an arrow be-
tween candidates u and v if u is more frequently better than v according to the judges’
preferences. In the left example, Candidate O is a clear Condorcet winner, beating all
other candidates. The right example exhibit a Condorcet paradox, as Candidate 0 beats
Candidate 1, Candidate 1 beats Candidate 2 and Candidate 2 beats Candidate 0, result-
ing in a cycle. Bold arrows are highlighted for clarity.

In practice, the optimization can be performed using differential evolution (Storn and Price,
1997). A good overview of ORA and rank distance functions is given in Heiser and D’ Ambrosio
(2013).

4.2 The problem of ranking is not trivial

No ranking function perfectly captures the judges preferences when there are more than two can-
didates. This idea is well highlighted by an important result from social choice theory: Gibbard’s
theorem (Allan, 1973), a generalization of Arrow’s theorem (J., 1950).

Theorem 1. Gibbard’s theorem. Any deterministic ranking method holds at least one of the fol-
lowing three (unwanted) properties:

1. The process is dictatorial®,
2. The ranking is limited to only two candidates,

3. The process is open to “tactical voting”: the preferences of a judge may not best defend their
interest.

In practice, this imply incompatibilities between several desired properties of ranking methods.
Some of the theoretical properties satisfied or not by the methods defined here are summarized in
Table 4. These properties are defined below.

9. In a dictatorial process, a single judge can fully dictate the outcome.



Winner Judge perturbation Candidate perturbation
Majority | Condorcet || Consistency | Participation || IIA | LIIA | Clone-proof

Random v 4 4 v 4

Mean v 4 v v v

Median v v v

Average rank v v
Copeland v v
Kemeny-Young v v v

Table 4: Main properties satisfied or not by the ranking functions.

Majority criterion (Rothe, 2015): If one candidate is ranked first by a majority (more than
50%) of judges, then that candidate must win.

Condorcet criterion: The Condorcet winner is always ranked first if one exists. The Condorcet
winner is the candidate that would obtain majority against each of the others when every pair of
candidates is compared. The Condorcet criterion is stronger than the Majority criterion.

Consistency: Whenever the set of judges is divided (arbitrarily) into several parts and rankings
in those parts garner the same result, then a ranking on the entire judge set also garners that result.

Participation criterion: The removal of a judge from an existing score matrix, where candidate
u is strictly preferred to candidate v, should only improve the final position of v relatively to u.

Independence of irrelevant alternatives (IIA): The final ranking between candidates u and
v depends only on the individual preferences between u and v (as opposed to depending on the
preferences of other candidates as well).

Local ITA (LITA) (weaker): If candidates in a subset are in consecutive positions in the final
ranking, then their relative order must not change if all other candidates get removed.

Independence of clones (clone-proof): Removing or adding clones of candidates must not
change the final ranking between all other candidates.

4.3 Guidelines

We have presented different ranking functions, and learned that none of them satisfies all the de-
sired theoretical properties mentioned above. If some of these theoretical properties are absolutely
required in your benchmark or competition, then they can dictate the function to chose. However,
in most cases, this theoretical analysis shade some light but does not settle the problem once for
all. To give insights in practical and machine learning related scenarios, (Brazdil and Soares, 2000)
and later (Pavao et al., 2021b) have conducted empirical studies, comparing ranking functions using
empirical criteria and running experiments on machine learning benchmarks. The results points that
the average rank method fares well, in terms of meta-generalization and stability.

Weighted average rank, in which we attribute a weight to each judge before computing the
average, can also be a good choice when there is a clear difference in the importance of each judge
in the evaluation. The weighted average rank function can be expressed as following, with w the
list of weights:

FO1) =L ¥ ;% rank(j)

m.
e s



5 Conclusion

This chapter offers a categorization of evaluation metrics, covering performance, ethics and societal
impact, resource utilization, and evaluator viewpoints (human or model based evaluation). It is
clear that real-world constraints must be a part of any evaluation, as they ensure that the results
are practical and applicable. To ensure statistically reliable evaluations, it is recommended to have
a consequent test set and to use bootstrap methods to assess error bars, given their computational
efficiency and accuracy. The required number of test set samples grows quadratically with the mean
error, the standard deviation of error rates and the confidence, while it grows exponentially with the
targeted precision level.

We also stressed out the importance of having a distinct final phase prevents potential overfitting.
Filtering participants accessing the final phase improve the generalization of the winner selection
(Pavao et al., 2022a). To enhance the relevance of results, as a rule of thumb, only participants that
exceed a predefined baseline should be allowed into this phase.

Finally, we studied the methods for aggregating results from multiple scores. The average rank
method showed its efficiency (Pavao et al., 2021a), while remaining simple to compute and to inter-
pret.
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